Квантовая Магия, том 8, вып. 4, стр. 4101-4126, 2011
Три ошибки Анти-СТО П.В. Путенихин (Получена 30
сентября 2011; опубликована 15 октября 2011) Многие из желающих опровергнуть СТО не стремятся изучить её. Математика СТО принципиально неопровержима. Последняя
возможность - это попытаться показать несоответствие математической теории СТО
реальному физическому миру. И в этих попытках необходимо опираться на
результаты опытов в стиле Маринова. Зачем нужно опровергать СТО? Под
банальным предлогом, что наука должна развиваться, что ошибочные положения,
теории тормозят её развитие? Что релятивисты
закрыли путь в науку «настоящим» физикам? Предположим, что цель будет
достигнута, изменится ли что-нибудь от этого? Вряд ли. Теория прочно занимает свою
огромную нишу в науке. Её убеждённые сторонники спокойно (или не спокойно) примут
ограничения, которые им навяжут противники, и всё останется, как и было, но с
поправками на применимость теории. И кому это нужно? «Все разговоры об опровержениях ТО имеют
своим источником неспециалистов. Часто это инженеры или ученые, всю жизнь
профессионально работавшие в далекой от ТО сфере. На старости лет им не дает
покоя слава Ньютона и Эйнштейна. А еще много любителей (особенно среди
молодежи), которые вообще научными исследованиями никогда не занимались. Им
просто нравится мечтать об опровержении хорошо установленных научных теорий.
Это банальная погоня за сенсацией» [22]. С такими мнениями охотно соглашаются другие участники форумов в интернете: «Кто такой альтернативщик? Это
тот, кто не знает физику - но вместо учебы выдает за науку свое о ней мнение». Довод,
который может устроить всех. Сторонников: «О чём можно спорить с неучами?!»
Противников: «А какие, собственно, доводы приводят релятивисты? Никаких!» При
этом как-то упускается из виду, что одним из величайших альтернативщиков был...
Эйнштейн, автор той самой опровергаемой СТО, и который по своему
альтернативизму уступает, пожалуй, только Копернику. Какой бы возвышенной целью ни руководствовались анти-СТО,
озвученные эпитеты в основном ими заслужены. Остановимся на трех, наиболее
значимых ошибках, допускаемых ими. 1.
Здравый смысл не
против знаний
Чаще
всего ударам противников релятивизма подвергается специальная теория
относительности, и крайне редко – общая теория относительности (которую называют также теорией гравитации), математика которой существенно сложнее математики СТО. Но
и специальную теорию относительности многие её критики попросту не знают или не
понимают. Особенно хорошо это заметно в рассуждениях антиСТО-в на
многочисленных форумах в интернете. Немалая часть доводов в опровержение
релятивизма зачастую сводится к констатации противоречия её со здравым смыслом,
житейской логикой. Им вроде как одного взгляда достаточно, чтобы понять
ошибочность этой теории. Рассуждения просты. Например, при анализе явления
замедления хода движущихся часов. Как известно из СТО, движущиеся часы отстают
по отношению к неподвижным часам. Но из той же СТО и неподвижные часы отстают
по отношению к движущимся, если смотреть на эти неподвижные часы с точки зрения
движущихся часов. Как такое возможно?! Какие же всё-таки часы отстают?! Основанный
на этом явлении известный «парадокс близнецов» - любимая тема опровергателей.
Впервые парадокс сформулирован в 1905 году Эйнштейном в статье «Об
электродинамике движущихся тел». В дальнейшем парадокс видоизменялся и чаще
всего формулируется так. Один из двух близнецов улетает с Земли на космическом
корабле, а другой остаётся на Земле. По возвращению космонавта на Землю
выясняется, что он моложе своего брата-близнеца. Но и близнец на Земле тоже
двигался по отношению к близнецу - космонавту. Поэтому он тоже должен быть
моложе улетавшего брата. Поскольку этого нет, то противники релятивизма
приходят к очевидному с их точки зрения выводу, что СТО ошибочна. Так их
стараниями рядовая задача СТО превратилась в парадокс. Если же рассуждения
доходят до уравнений (обычно, преобразований Лоренца), то не каждый
«опровергатель» способен объяснить их физический смысл, скатываясь к
противоречию с «логикой». Ими создаются всё более и более изощрённые мысленные
эксперименты. Но все эти эксперименты в основе своей содержат завуалировано или
открыто всё то же противоречие со здравым смыслом, и должны якобы привести к
парадоксу. Ну, не могут двое часов одновременно отставать друг от друга!
Причину такой критики понять не сложно: авторы исходят из собственных
представлений об СТО, из упрощённой проекции её на сознание автора. А если всё
очевидно и просто, то незачем глубоко и тщательно вникать в отвергаемую теорию.
На одном из интересных сайтов в Интернете, целиком посвящённом теории
относительности Эйнштейна, на главной странице записано: «В мире есть не больше сотни людей,
понимающих теорию относительности». Но это, пожалуй, правильнее отнести к общей
теории относительности. По сравнению с нею специальная теория относительности вполне
доступна пониманию, поэтому больше всего споров идет вокруг неё. К тому
же, именно эта часть теории относительности более отчётливо, более выпукло
противопоставляет себя «здравому смыслу». Почти каждый, впервые слышав о
выводах специальной теории относительности, сразу испытывает недоумение: как же
это возможно, ведь теория делает совершенно несовместимые друг с другом
утверждения! Пытливый разум новичка начинает искать примеры из окружающей
действительности, которые, по его мнению, не укладываются в эти утверждения
теории. И даже находит такие примеры! Но сторонники специальной теории
относительности так же уверенно убеждают его: нет, эти примеры ошибочные (и всегда
оказываются правы)! Теория относительности объясняет эти примеры совершенно
иначе, не так, как это кажется на первый взгляд. Споры обычно затягиваются,
новичок продолжает копаться в литературе, тщетно пытаясь найти ошибку в теории.
Если ему хватает настойчивости и, скажем прямо, способностей, через некоторое время
он и сам начинает видеть ошибки в своих примерах. Однако почерпнутые из
литературы знания позволяют придумать новые, более хитрые примеры, вроде бы
опровергающие теорию… И вновь начинаются ожесточенные споры с теми, кто теорию
защищает. Но ошибки в опровергающих доводах обнаруживаются вновь и вновь. 2.
Как опровергнуть
неопровержимое
Все
«парадоксальные» выводы специальной теории относительности является следствием
всего двух постулатов. Мы принимаем эти постулаты за истинные утверждения,
поэтому и все выводы, полученные корректными логическими и математическими
преобразованиями, мы обязаны признать такими же истинными. Действительно, мы же
не ставим под сомнение истинность математических и формальных логических
преобразований? Разумеется, если в них нет математических или логических ошибоки.
Но в специальной теории относительности таких ошибок нет – это доказано за
столетие множеством исследователей. Эйнштейн в своей основополагающей работе так
сформулировал эти послутаты (он называл их принципами): «Дальнейшие соображения опираются на
принцип относительности и на принцип постоянства скорости света. Мы формулируем
оба принципа следующим образом. 1.
Законы, по которым изменяются состояния физических систем, не зависят от того,
к какой из двух координатных систем, движущихся относительно друг друга
равномерно и прямолинейно, эти изменения состояния относятся. 2.
Каждый луч света движется в «покоящейся» системе координат с определенной
скоростью V, независимо от того, испускается ли этот луч света покоящимся
или движущимся телом». Со временем эти принципы стали
формулировать иначе, коротко: 1. Все физические законы имеют одинаковый вид во всех инерциальных системах отсчёта. 2. Скорость света является максимальной скоростью, и она одинакова во всех инерциальных системах отсчёта. В самих постулатах (принципах) никаких противоречий со здравым смыслом не видно. Парадоксально выглядят логические следствия из них - преобразования Лоренца и те эффекты, которые из них следуют. Уравнения Лоренца появились раньше специальной теории относительности Эйнштейна. В теории относительности они получили серьёзную теоретическую основу. Из этих преобразований следовало, что движущиеся часы отстают, а предметы сжимаются. Оказалось, что одновременность относительна: события, одновременные для одного наблюдателя, для другого происходят в разное время. В целом специальная теория относительности Эйнштейна – это выводы, математические следствия из фактически единственного, довольно странного утверждения: фотон движется с одной и той же световой скоростью относительной любой подвижной или неподвижной системы отсчёта. Если мы движемся и измеряем скорость фотона, пролетающего мимо нас, то получаем скорость света. Точно также неподвижный наблюдатель, измеряя скорость того же фотона, получает ту же скорость света. И мимо движущегося наблюдателя и мимо неподвижного фотон движется с одной и той же скоростью – световой. Все эти
странности получены как корректные математические выводы, поэтому СТО по своей сути является теорией
математической: методология её вывода, исходные постулаты. А в науке известно
такое наблюдение: если математическая теория не опровергнута на протяжении 100
лет, она не будет опровергнута никогда. СТО – красивая и прозрачная теория, и за
более чем столетний срок ошибок в её положениях не найдено. Математически она
неопровержима. Поэтому любой мысленный эксперимент, являющийся приёмом математическим,
априори обречён на неуспех. Нет и быть не может опровержения СТО, использующего
её матаппарат и показывающего не умозрительно-логические, а математические
ошибки в теории. Заявления «ты не прав» и доказательства «на пальцах» доводами
не являются. Не существует мысленных экспериментов, математически рассчитанных
с помощью уравнений СТО и противоречащих ей. Тем не менее, исподволь, неявно,
возможно, не отдавая отчёта самим себе, её критики пытаются, в конечном счете,
с помощью математического аппарата самой СТО показать нарушение принципа
инвариантности скорости света, что один и тот же фотон движется с разными
скоростями в разных ИСО. Но математическая теория СТО внутренне непротиворечива
и самодостаточна, и все «мысленные» эксперименты можно поделить на две
категории: эксперименты, основанные на математике СТО, и эксперименты,
навязывающие теории утверждения, противоречащие её сути. Первые из них никогда
ей не противоречат. Вторые живут собственной жизнью и к специальной теории
относительности не имеют никакого отношения. 3.
Последний гвоздь
Поскольку математика СТО принципиально неопровержима, остается только физический эксперимент. Эксперимент, который покажет несоответствие утверждений математической теории физической реальности. Такой эксперимент «должен быть проведен по определенным правилам и согласно определенным критериям. Это означает, что экспериментальная проверка сама по себе имеет свою методологию, свои принципы: проверка должна быть множественной, в разных условиях, в разных местах, в разное время (т.е. полученные результаты должны быть инвариантны по отношению к установке, месту, времени, личности, и пр.); должна быть указана ошибка, которая должна лежать в определенных пределах для всех результатов; и мн. др.» [2] Действительно,
математика теории безупречна. Но она основана на постулатах, которые
принимаются без проверки. А постулаты могут и не соответствовать реальности. В
этом случае и все корректные, логичные следствия из этих постулатов тоже не
будут соответствовать реальности. Поэтому для доказательства несоответствия
математической теории физической реальности необходимо выбрать либо постулат,
либо какое-нибудь следствие теории, которое можно проверить в физическом
эксперименте. Одним из следствий СТО является известное утверждение невозможности
определить состояние движения ИСО (скорость, направление) изнутри неё. Об этом
пишут многие, в частности, Гришин Ю.А. в статье «Перестаньте критиковать СТО» [2]: «СТО
утверждает только, что никакими экспериментами невозможно обнаружить разницу между
инерциальными системами отсчета, даже если в этот разряд включить систему,
привязанную к эфиру. В теории Лорентца, на которую намекает Эйнштейн названием
своей статьи, есть эфир (электромагнитный,
а не механический!), но и там, как ни странно, невозможно обнаружить
разницу между инерциальными системами отсчета, включая и эфир». Шаляпин А.Л. ссылается на Анри Пуанкаре [20], который: «показывает, что исходя из представлений об эфире и уравнений Максвелла – Лоренца, невозможно обнаружить абсолютное движение». Являясь
логическим следствием принципа постоянства скорости света, это утверждение достаточно
«удобно» для проверки, поэтому критикам СТО следует обратить на него самое
пристальное внимание: «Никаким физическим
экспериментом, проведенным в инерциально движущейся
лаборатории, нельзя установить скорость последней». Если удастся
определить состояние движения изнутри ИСО, то это утверждение и, автоматически,
все другие положения СТО становятся ошибочными. Такое движение, очевидно, может
быть только абсолютным, оно явно подтверждает наличие абсолютной системы
отсчёта, которая сама по себе (очевидно) неподвижна. Возможность определения
движения из ИСО ставит под удар другой важный принцип релятивизма – принцип
эквивалентности. Определить природу инерционных сил становится возможным – то
ли это гравитационные силы, то ли это силы, вызванные ускоренным движением
системы отсчёта. Таким
образом, в попытках опровергнуть СТО есть только один путь: показать её несоответствие
к реальному миру, показать, что принцип постоянства скорости света (принцип
относительности) неверен, что возможно определить состояние движения ИСО
изнутри. Однако эксперименты, способные показать такое несоответствие, противниками
релятивизма проводятся зачастую поверхностно, некорректно, разрозненно, без
учёта достижений других исследователей. Каждый стремится изобрести что-то своё.
При этом не уделяется должного внимания подготовке, проведению и анализу
эксперимента. Тем не менее, при всей их слабости, эти эксперименты всё-таки
показывают, хотя и недостаточно отчетливо, отклонение от постулатов СТО. Показывают,
что скорость света не является инвариантом. Поэтому противникам релятивизма остро
необходимо повторять эти эксперименты, пропагандировать их, обсуждать на
форумах и в СМИ. В результате будет показана ошибочность либо этих экспериментов,
либо основ СТО. Рассмотрим наиболее, на наш взгляд, весомые из таких
экспериментов. Эксперименты МариноваОпыт Маринова – первая, не по времени, но по яркости и целенаправленности попытка проверки нарушения принципа относительности [5]. Поэтому на форумах имя Маринова встречается чаще других антирелятивистов – экспериментаторов. Понятно, что опыты эти с порога, без обсуждения подвергаются критике сторонников релятивизма. Однако принципы, заложенные в них, являются предельно чёткими. В журнале «Письма в Физический Мир России» опубликована статья Маринова, в которой показана одна из экспериментальных установок (рисунок взят из журнала «Техника - молодёжи», №10, 2002 год, с.5, он упрощённый и отличается от оригинального рисунка Маринова): Рис.1 Экспериментальная
установка С.Маринова. «В одном из таких
экспериментов, выполненном несколько лет назад болгарским физиком С.Мариновым,
лучи двух лазеров направлялись навстречу друг другу сквозь расположенные один
против другого отверстия в двух черных, поглощающих свет дисках, укрепленных на
общей оси. Когда ось приводится во вращение, световые лучи уже не попадают
точно в центры противостоящих отверстий, так как за время движения света от
одного диска к другому последний успевает чуть-чуть повернуться, и часть света
уходит за край отверстия. Чем быстрее вращается ось, тем большая часть
запаздывающего света поглощается дисками. Интенсивность прошедших сквозь два
отверстия лучей фиксируется высокочувствительными детекторами». Не вдаваясь в детали
установки и эксперимента, описанные в статье Маринова, приведём наиболее
интересные фрагменты из неё [5]. «Фундаментальной экспериментальной
аксиомой специальной теории относительности считается следующее утверждение:
никаким физическим экспериментом, проведенным в инерциально
движущейся лаборатории нельзя установить скорость последней». Для доказательства этого Маринов проводит в 1973 году в Софии «девиационный эксперимент со связанными зеркалами». Эксперимент был не очень точен, и Маринов измерил только максимальную проекцию абсолютной скорости Земли по оси аппарата, получив её величину в диапазоне 30 – 230 км/сек. В 1975-76 годах там же он проводит другой, «интерференционный
эксперимент со связанными зеркалами», который был гораздо точнее. Проводя
измерения в течение шести месяцев, Маринов получил для модуля
абсолютной скорости Солнца значение в диапазоне 283 – 323 км/сек. Эти результаты заметно противоречат
приведённой «фундаментальной аксиоме». В этой же статье Маринов формулирует ещё
одну аксиому: «Фундаментальной экспериментальной
аксиомой общей теории относительности считается следующее утверждение:
никаким физическим экспериментом, проведенным в ускоренно движущейся
лаборатории, нельзя установить, является ли это ускорение кинематическим, то
есть порожденным ускоренным движением лаборатории по отношению к отдаленным
звездам, или гравитационным, то есть порожденным близлежащими массами,
например, массой Земли. Эту аксиому и ее следствия можно назвать принципом
эквивалентности». И эту аксиому Маринов
экспериментально ставит под вопрос, приводя выводы о её ошибочности: «Мой интерференционный
эксперимент со связанными зеркалами был проведен в течение полугода,
и я заметил, что из-за движения Земли вокруг Солнца измеряемая абсолютная
скорость Земли изменялась. Значит, кинематическое ускорение лаборатории
приводит к изменению ее абсолютной скорости. Однако, мой аппарат может оставаться годами под воздействием
гравитационной притяжения Земли, но регистрируемая им абсолютная скорость при
этом изменяться не будет. Этим показана несостоятельность принципа
эквивалентности, утверждающего, что нельзя отличить экспериментально
кинематическое ускорение от гравитационного. Эксперимент по выявлению
несостоятельности принципа эквивалентности лучше провести в ракете, ускоряемой
под воздействием выбрасываемой массы. Когда ракета ускоряется в космосе по
направлению ее абсолютной скорости, динамометр в
ракете будет указывать на наличие ускорения, и ее абсолютная скорость будет расти.
Однако, если ракета покоится на поверхности планеты,
чья орбита перпендикулярна абсолютной скорости Солнца, то динамометр в ракете
будет указывать на наличие ускорения (планетарного гравитационного ускорения),
но ее абсолютная скорость изменяться не будет». С ним соглашается А.Л.Шаляпин
[20]: «Результаты экспериментов С.Маринова с вращающимися дисками свидетельствуют в пользу факта движения Земли в абсолютном пространстве (то есть относительно неподвижного эфира) со скоростью порядка 300 км/с». И приводит слова небезызвестного диссидента и «альтернативщика» О.И.Митрофанова: «Последний гвоздь в релятивистские бредни вколотил С.Маринов. Итак, вопреки категорическому запрету теории Эйнштейна, измерена абсолютная скорость Земли в неподвижном эфире. … опыт Маринова замалчивают. Релятивисты сидят тихо, как мышь под веником, не потому, что «настоящих буйных мало», а просто крыть нечем…». В статье, подготовленной на
основе обзора В.С.Барашенкова и М.3.Юрьева «Нарушается ли принцип относительности?»,
вышедшего в свет в журнале «Физика ядра и элементарных частиц», приводится
описание опытов Маринова и выводы из них, в частности: «Одно из основных положений
теории относительности состоит в том, что скорость света не зависит от направления
его движения, поэтому ослабление обоих лазерных лучей вращающимися дисками
должно быть одинаковым. А вот эксперименты Маринова показали, что это не так!
Опыты повторялись в нескольких вариантах на установках, где трудно
контролируемая, подверженная деформациям механическая система дисков заменялась
оптической, с отражающими зеркалами; и, тем не менее, результат получался один
и тот же: скорость света во встречных пучках разная. И самое главное - добавка
к скорости, которая в одном пучке увеличивает, а в другом уменьшает среднюю
скорость света, во всех опытах оказалась равной 300-400 километрам в секунду,
то есть такой же, как измеренная астрономами скорость движения Земли по
отношению к заполняющему космос фону нейтрино и фотонов. Измерения повторялись
в разное время суток и разное время года с тем, чтобы поверхность планеты, а
вместе с ней и измерительная установка были по-разному ориентированы
относительно скорости Земли. Это позволило вычислить не только величину добавки
к скорости, но и направление. Оно тоже оказалось близким к тому, что дают
астрономические наблюдения». Справедливости
ради нужно отметить, что доводы Маринова иногда подвергаются критике корректно,
как говорится, с калькулятором в руках. Вот пример (взят с одного из форумов по
физике): «Начнём считать. Исходные данные (из статьи Маринова): 1. Скорость вращения дисков ω = 200 об/с. 2. Расстояние между дисками L = 1,2 м. 3. Радиус расположения отверстий на дисках R = 0,12 м. 4. Заявленная Мариновым погрешность Δv = 40 км/с = 4х104 м/с 5. Скорость света (возьмем приближённое значение, сути это не изменит) c = 3x108 м/с Считаем: 1. Линейная скорость движения отверстий v = 2πωR = 2 х 3,14 х 200 х 0,12 = 150,7 м/с. 2. Время прохождения светового луча от одного диска до другого t = L/c = 1,2/3x108 = 4x10-9 секунды. 3. Величина смещения отверстия на втором диске за время прохождения светового луча между дисками ΔL = vt = 150,7 x 4x10-9 = 6,03x10-7 метра = 0,6 микрона. 4. Относительная величина изменения времени прохождения луча света между дисками исходя из заявленной Мариновым погрешности δ = Δv/c = 4х104/3x108 = 1,33х10-4. 5. Требования к точности изготовления (геометрии отверстий) Δl = ΔLxδ = 0,6 x 1,33х10-4 = 8x10-4 микрона. Немного поясню относительно пункта 5, т.е. как связана точность изготовления геометрии отверстий и погрешность измерения не изотропности скорости света. Дело в том, что фототок, поступающий с фотодетекторов, усредняется, поэтому "куски света", как пишет Маринов, при неточности изготовления отверстий (считая, что отклонение от номинального положения носит случайный характер) при отклонении скорости света всё равно будут проходить, но уже через другие (смещённые) отверстия, и никакого изменения фототока не произойдёт! Т.е. в этом смысле неточность изготовления отверстий эквивалентна тому, что отверстия на втором диске как бы имеют не круглую, а овальную, вытянутую по окружности вращения форму. Таким образом, точность соблюдения геометрии отверстий играет решающую роль в этом эксперименте». Доводы, как
видим, весомые. Однако… Что же всё-таки показал прибор Маринова, какое
изменение фототока, если он такой «неточный в изготовлении»? Величины скоростей у Маринова, действительно,
имеют большой разброс. Но ведь скорости-то измерены! Плохо то, что нет (в
свободном доступе) реальной сводки скоростей, из которой можно было бы увидеть:
когда направление измерительной оси прибора Маринова совпадает со скоростью
движения Земли в пространстве, прибор показывает некоторую скорость (причём по
величине близкую к полученным из других, релятивистских источников). Напротив,
когда направление оси прибора перпендикулярно к направлению движения Земли в
пространстве, то прибор показывал отсутствие движения. Видимо, нужны
исследования трудов Маринова, чтобы найти эти выводы в чётко сформулированном
виде. Конечно, если они есть. И, с другой стороны, необходимо
провести повторные эксперименты с аналогами этого прибора, чтобы получить эти
выводы о скоростях Земли. Другой
из формально релятивистов (В.Петров) приводит следующее «удивлённое» возражение
по экспериментам Маринова (взято из интернета): «Кроме того, согласно
Маринову, Земля одновременно движется в двух взаимно
перпендикулярных направлениях: относительно Солнца с орбитальной скоростью ~ 30
км/сек и со скоростью 362 ± 40 км/сек в направлении, перпендикулярном
орбитальной скорости. Очевидно, что этого никак не может быть!» Похоже,
В.Петров плохо себе представляет, как тело может двигаться с разными скоростями
по двум координатам. Наверное, он ещё больше удивится, если сказать, что тело
может двигаться и с ещё одной скоростью – по третьей координате. Вот ещё одно «удивлённое» опровержение опытов Маринова: «Полученные Мариновым результаты об «абсолютной» скорости Земли, имеющей порядок 300 - 400 км/с, не согласуются с известными опытными данными. Наша планета, конечно, вращается вокруг Солнца с орбитальной скоростью около 30 км/с. Но она еще якобы куда-то движется с примерно в десять раз большей скоростью! Куда - в сторону Полярной звезды или туманности Андромеды?» (Г.Черников, кандидат технических наук, статья на сайте likeBook.ru). Мы просто присоединимся к ответу редакции на это «опровержение»: «В связи с этой публикацией рекомендуем читателям вернуться к статье «Одинока ли Вселенная?» («ТМ», No1 за 2002 г.), где говорится о том, что радиофизики точно установили: наша Солнечная система (а, следовательно, и Земля) действительно летит со скоростью около 400 км/с в направлении созвездия Льва...» Экспериментальные установки Маринова
достаточно просты конструктивно, и его опыты могут повторить другие исследователи.
Полезно это как противникам, так и сторонникам релятивизма. Прибор является
однокоординатным измерителем абсолютной скорости в пространстве и позволяет «в
одном подходе», изменяя направление его оси, измерить скорости Земли в разных
направлениях и сопоставить их с данными астрономических наблюдений. А измерения
независимых исследователей могли бы исключить субъективные, географические,
временные и прочие факторы. Эксперименты Торра-Колена-ДеВиттаВ статье «Новый Эксперимент по
Анизотропии Скорости Света: Обнаруженные Гравитационные Волны и Абсолютное
Движение», Р.Т. Кахилл (пер. с англ. А.М. Чепик) [4] приводится подборка экспериментов по обнаружению абсолютного движения
разными исследователями: «Первый эксперимент по односторонней скорости распространения в коаксиальном кабеле был выполнен в Университете Штата Юта в 1981 году Торром и Коленом. Устройство состояло из двух рубидиевых часов, размещенных на расстоянии приблизительно 500 м; 5MГц радиочастотный (РЧ) сигнал распространялся между часами через закопанный коаксиальный кабель, заполненный азотом, поддерживаемым в постоянном давлении 2 фунта на квадратный дюйм. Торр и Колен нашли, что, в то время как время путешествия туда и обратно оставалось постоянным в пределах 0.0001% c, как ожидалось в Гл.2, наблюдались изменения в одностороннем времени путешествия». С этими выводами нечётко соглашается А.Л.Шаляпин: «В этих экспериментах сравнивалась фаза двух рубидиевых стандартов частоты, разнесенных на расстояние 500 м, с целью обнаружения возможной анизотропии скорости распространения света при однократном прохождении трассы. При реализации экспериментов обнаружены большие суточные вариации скорости света, порядка 10-3-10-2 для разнесенных часов, тогда как при сближении часов подобных вариаций не наблюдалось. На основе анализа точности показано, что предлагаемые эксперименты могут надежно обнаружить движение Солнечной системы в плоскости Галактики при достаточно длительном накоплении данных. Результаты экспериментов Торра - Колена, в принципе, можно было бы интерпретировать как еще одно свидетельство о нарушении принципа относительности, согласно которому невозможно обнаружение абсолютного движения Земли в абсолютном пространстве (эфире)». Эксперименты, подобные экспериментам Торра-Колена, провел позднее ДеВитт: «В течение 1991 г. Роланд ДеВитт выполнил самый обширный эксперимент по анизотропии движения РЧ-сигнала в коаксиальном кабеле, накопив данные за 178 дней. … Эксперименты Миллера и ДеВитта будут в конечном счете признаны как два из самых существенных экспериментов в физике, ибо использовав различные экспериментальные методы, они независимо обнаружили по существу одинаковую скорость абсолютного движения». В них, как отмечено, получены выводы: «ДеВитт распознал, что эти данные были свидетельством абсолютного движения… Данные ДеВитта проанализированы … и получены предполагаемые … скорость 430 км/сек». Экспериментальные
установки Торра-Колена, ДеВитта, как и прибор Маринова, являются
однокоординатными измерителями скорости. Но они достаточно сложны в исполнении,
поэтому повторить эти эксперименты может далеко не каждый. Установка жестко
привязана к Земле, поэтому измерение скоростей в различных произвольных
направлениях имеет большие практические сложности. Можно лишь фиксировать
направление измерительной оси установки по расположению планеты в пространстве
в различные периоды её движения по орбите. Эксперимент ШтырковаЭксперименты
Е.И.Штыркова со спутником Земли в 1997 – 2000 годах [21] до сих пор практически не
обсуждаются, ссылок на них в интернете немного: «Однако недавно во
время слежения за поведением спутника на
геостационарной орбите равномерное движение Земли было экспериментально обнаружено
без привлечения астрономических наблюдений за звездами. Было доказано, что
движение Земли проявляется в аберрации электромагнитных волн (эффект первого
порядка), распространяющихся от
источника излучения, который фиксирован относительно приемника и самой Земли,
что и позволило непосредственно измерить параметры ее движения. Источник находился на геостационарном спутнике, а приемник
в антенне наземного радиотелескопа. В
такой ситуации, когда спутник неподвижно «висит» над Землей, относительная
скорость источника и приемника равна нулю и их координаты (геоцентрическая
долгота и широта спутника, а также геодезические координаты телескопа) остаются
постоянными в течение долгого времени, т.е. источник и приемник принадлежат
одной и той же системе координат (системе Земли)». В опубликованных работах Штыркова подробно описаны схемы, процедуры
расчета и все условия проведения эксперимента: Рис.2 Экспериментальная
установка Е.И.Штыркова с геостационарным спутником Земли. При анализе
экспериментальных данных автором были получены выводы о наличии эфирного ветра: «В результате этого
эксперимента наблюдалось практически полное совпадение полученного
среднегодового значения скорости
эфирного ветра (29,4 км/c) с известной из астрономических наблюдений
орбитальной скоростью Земли (29,765
км/c). Этого было вполне достаточно для
сделанного заключения о том, что
движение Земли действительно может оказывать свое влияние на результат эксперимента, выполняемого на ней,
а составляющая ее движения при этом может быть выделена в явлении первого
порядка по отношению скорости Земли к скорости света. Такой экспериментальный
результат противоречит положению специальной теории относительности о том, что
все результаты любых экспериментов, проводимых на Земле с использованием
различных эффектов, не зависят от движения Земли. Это и может служить
основанием для пересмотра утверждения специальной теории относительности о
независимости скорости света от движения наблюдателя». И вновь, в полном согласии
с выводами Маринова об ошибочности одного из важных утверждений специальной
теории относительности, Штырков делает вывод: «Совпадение параметров движения Земли,
измеренных в данном эксперименте, со значениями, принятыми в наблюдательной
астрономии, подтверждает достоверность полученных результатов и позволяет
сделать вывод о том, что скорость равномерно движущейся системы координат (в
нашем случае Земли) может быть реально
измерена устройством, в котором источник
излучения и приемник находятся в покое как относительно друг друга, так и самой
системы координат. Этот экспериментальный
факт является основанием для пересмотра утверждения специальной теории относительности о
независимости скорости света, измеряемой в движущейся системе координат, от
движения этой системы». Особенностью
экспериментальной установки Е.Штыркова является то, что она не только жестко
привязана к Земле, но и имеет ограниченные места расположения. Эта особенность
не позволяет произвольно ориентировать установку в пространстве, чтобы измерить
все возможные значения скоростей Земли в нём. Однако степень совпадения полученного
результата с другими источниками настолько высока, что выводы из эксперимента
просто невозможно оставить без внимания. Тем не менее, результаты экспериментов
были подвергнуты критике: «…дискуссионная
статья Е.И.Штыркова «Измерение параметров движения Земли и Солнечной системы»,
опубликованная в «Вестнике КРАУНЦ», ошибочна, а скорость равномерно движущейся
лабораторной системы отсчета не может быть измерена с помощью аберрации света.
Аберрация света относится к ненаблюдаемым величинам. С помощью аберрации света
можно измерить только относительное изменение скорости движения лабораторной
системы отсчета относительно эфира (звезд), но не абсолютную скорость. Однако
это не является основанием для пересмотра утверждения специальной теории
относительности о независимости скорости света от движения наблюдателя» (Н.В. Купряев, ScyTecLibrary). Доводы,
выкладки и заключение оппонента, несомненно, заслуживают пристального внимания: «А работа в том виде, в каком она представлена, ошибочна, и для правильной интерпретации полученных результатов необходимо сделать перерасчет», тем более что все
необходимые данные для этого в работах Штыркова имеются. Отметим важное, на наш
взгляд, утверждение оппонента в отношении этих опытов о возможности измерить
«только относительное изменение скорости». Возможно, разногласия возникли из-за
толкования понятия «аберрация». Аберрация света – кажущееся отклонение небесных
светил от их истинного положения на небесном своде, вызванное относительным движением светила и
наблюдателя. В опытах Штыркова Земля и спутник неподвижны друг относительно
друга: «доказано, что скорость равномерно движущейся
лабораторной системы координат (в нашем случае Земли) реально может быть
измерена при помощи устройства, в котором источник излучения и приемник
находятся в состоянии покоя относительно друг друга и этой же системы
координат». Очевидно, что возникающее
при этом явление лишь проявляется, как аберрация, которая вызвана эфирным
ветром. Экспериментальная установка
Штыркова однокоординатная и составляет с планетой единый комплекс. Поэтому
выбрать произвольное направление измерения невозможно, нужно фиксировать
фактическое положение «прибора» в пространстве. В процессе движения Земли
результирующий вектор скорости в направлении измерительной оси «прибора» в
пространстве постоянно изменяется. Следовало бы ожидать, что среди значений
измеренных скоростей должно было оказаться и значение скорости порядка 200
км/сек. В работах Штыркова найти указаний на такую скорость не удалось. Опыт ДовженкоОписание
установки А.Довженко по проверке принципа относительности Эйнштейна можно найти
в его статье на сайте STL [3] (начало цитаты): «Схема опыта весьма проста – луч света (от любого источника на вращающейся платформе), направляется ВДОЛЬ движения Земли и фиксируется место его попадания. Затем платформа поворачивается на 90о и выясняется, – насколько сместилась точка его попадания в «мишень». Поскольку скорость Земли в 10 000 раз меньше скорости света, то смещение точки попадания луча будет во столько же раз меньше длины хода луча. И, собственно, все! Ясно, что длину хода луча желательно выбирать большую, чтобы смещение было заметнее. В моем опыте источником света стал «лазер» от учебной указки, способный давать четкое пятно на удалении около 100 м. Здесь и далее «лазер», который оказался всего – лишь бескорпусным светодиодом и линзой перед ним. От лазера у него только монохроматический красный свет, не более того. Поворотной платформы такой длины у меня не было, но нашелся подходящий школьный коридор, ориентированный с востока на запад, по земной параллели» (конец цитаты). Схематично установку по приведённым описаниям
можно представить в следующем виде: Рис.3 Схема экспериментальной
установки А.И.Довженко с лазерной указкой. Указка и мишень (тетрадный лист)
жестко закреплены на полу. Длина коридора - ок.60 метров. Видим, что
установка является двухкоординатным измерителем скорости в абсолютном
пространстве. Однако «сканирование» всех возможных направлений привязано к
суточному движению Земли. То есть, за сутки измерительная плоскость «установки»
производит один оборот вокруг оси, параллельной оси вращения Земли. Ось
вращения Земли была параллельна плоскости мишени (и её оси x0), поэтому на мишени
должны были отразиться все возможные значения её скорости в абсолютном
пространстве. К сожалению, качество исполнения «установки» низкое, поэтому
получить наглядные показания практически невозможно. Сам автор признаёт это
(начало цитаты): «Поэтому моя просьба ко всем, кто найдет время и
возможность вытащить в коридор лазер и повторить мой опыт – сделайте это под
протокол, т. е. документально. Может со временем количество этих опытов
перейдет в качество» «Опыт
проводился в г. Омске в середине августа
месяца 2006 года, поэтому ровно в полдень, когда Солнце светит с юга, сама
Земля летит почти точно с востока на запад. Именно в это время был включен «лазер»
и зафиксировано место попадания его пятна. Через 6 часов Земля повернулась на положенные 90о, и пришло время проверить величину смещения пятна света. Поскольку замеренная длина коридора равнялась 60 м, то ожидалась линейная величина смещения в 6 мм. Что и подтвердилось вполне! Далее, по прошествии ещё 6 часов, пятно вернулось в первоначальное положение. Ещё далее, ещё 6 часов, пятно двигалось в направлении, противоположном первому, после чего к концу суток снова вернулось на «нейтральное» место! «Лазер» был весьма жестко закреплен на кафельном полу, «мишень» также крепко приклеена к стене коридора, управление «лазером» (вкл. – выкл.) удлинено проводами и вынесено подальше от него, чтобы исключить механические воздействия. В продолжение опыта посторонние люди отсутствовали, так что чистота опыта была соблюдена вполне. Ход луча был с запада на восток, но это только по чисто техническим причинам – так был расположен лестничный марш. Осталось уточнить, что от «нейтрального положения» пятно света смещалось по вертикали – ведь в этой плоскости происходило вращение Земли относительно расположения здания, с этим согласится любой из тех, кто понял суть опыта. Ясно, что выявилась скорость Земли в 30км/сек» (конец цитаты). Результат эксперимента Довженко с лазерной
указкой представляет собой один тетрадный лист с нанесёнными на него вручную
«контурами» лазерного луча (красное пятно, для наглядности показывающее пятно
от лазерного луча, добавлено в данной статье). Рис.4 Тетрадный лист с
результатами замеров (карандашные пометки вручную) эксперимента А.Довженко с лазерной указкой летом 2006 года. Позднее А.Довженко провёл ещё один эксперимент, результаты которого он не представил (начало цитаты): «Опыт требовал контрольной проверки на предмет отсутствия температурных сдвигов частей здания, для чего (уже в другой школе), вполне подошел коридор, ориентированный с севера на юг. Логика говорила о том, что теперь пятно от «лазера» за те же сутки станет двигаться по эллипсу. Смещение вдоль его малой оси должно зависеть еще и от угла наклона Земной оси к плоскости её орбиты, а величина длинной оси эллипса зависит только от скорости Земли и от длины хода луча «лазера». Смещения ожидались меньшие, чем в первом опыте, поскольку здесь длина коридора была только 45 метров, да и Земля двигалась несколько в ином направлении (прошел месяц от первого опыта и был уже сентябрь). Здесь луч имел ход с севера на юг и тоже по чисто техническим причинам. В полном соответствии с ожиданиями – пятно от «лазера» двигалось по эллипсу! Удивительным оказалось то, что величина смещения превысила ожидания и весьма значительно. Конечно, оба варианта опыта были лишь качественными, их целью было только выявить само смещение и проверить соответствие его величины теоретическим предположениям. Точные замеры величины сдвигов пятна света требуют применения более мощных лазеров и прочего, но это уже не принципиально, поскольку эффект выявляется даже таким примитивным «оборудованием». Между тем, второй вариант опыта позволяет выдвинуть предположение, что в нем удалось отчасти выявить и движение Земли (и всей Солнечной системы), по отношению к центру нашей Галактики – Млечный Путь. Это так, поскольку большее смещение пятна указывает на выявление скорости, величина которой превышает 30 км/сек». (конец цитаты) Тем не менее, основываясь лишь на этом неубедительном листке тетради, автор делает решительные и далеко идущие выводы: «Теперь о некоторых выводах и следствиях из этого опыта: 4. Ликвидируется понятие Инвариантности скорости света, ибо оно родилось из «факта» невозможности прежде в закрытом эксперименте выявить скорость Земли, или «эфирный ветер»». Эксперименты ПриставкоСвои
эксперименты по проверке принципа относительности автор снял на видеокамеру и выложил
в интернете. Затем он попытался обсудить свои идеи на нескольких форумах. Опыты
весьма эффектные и наглядные [10, 11, 13]. Однако на форумах они были подвергнуты уничтожающей критике с
формулировкой вида «этого не может быть» [15, 16]. По разрозненным описаниям можно составить
схему экспериментальной установки: «Источник и мишень расположены на брусе 150х150 и расстояние между ними 6 метров. Перемещение луча света по оси ОУ». В наших целях мы чуть изменим назначения осей координат, совместив ось распространения луча с осью 0Z. «Источник и мишень расположены на брусе 150х150х6000 мм. Брус установлен на бочку, точнее между брусом и бочкой расположен лист фанеры». «Схема установки проста: на брус 150х150х6000 мм с помощью металлических уголков толщиной 2 мм крепятся источник света, мишень и регистрирующее устройство. Эта конструкция устанавливается на металлическую бочку накрытую листом фанеры. На фанеру кладётся поворотный диск, а на него балка с приборами. Включаются источник света и прогревается 30 минут. Включается регистрирующее устройство и начинается поворот установки на 360 градусов. Потом диск меняется на кусок бруса, и балка изменяет положение по вертикали. Координатная сетка на мишени имеет шаг 1 мм». Итак, предполагаемая схема установки В.Приставко имеет такой вид: Рис.5 Схема
экспериментальной установки В.Приставко. Лазер и мишень жестко закреплены на
деревянной поворотной балке. На форумах при
обсуждении своих экспериментов В.Приставко не нашёл сторонников, а встретил критику
в весьма резких тонах: «Ну да, так же как Вам до здравого смысла. Разберитесь в начале с теорией, рассчитайте установку, покажите результаты теоретические, а затем из опыта. Тогда можно разговаривать. А так беспредметный разговор. Желаю успеха!» «А вот мне интересно, раздел «Дискуссионные темы» действительно должен являться площадкой для публикации всевозможными неадекватами своего бреда, вызванного непониманием стандартных вопросов?» «В пургаторий, ввиду полного неприятия автором здравой критики» «А у Вас - деревянная дура со скрежетом и толчками вращается на бочке. Фи! Ничего, кроме мусора, Вы не наблюдали и нам не показали». «Наиболее вероятная причина «данных» в первом эксперименте - недостаточная жесткость конструкции. Во втором - нагрев источника при работе». «По-моему, уровень «ниспровергателей СТО» катастрофически падает. Раньше они хоть пытались объяснить опыт Майкельсона на основании классической механики. Сейчас они «меряют» сами не зная что и объявляют это опровержением СТО». «Вы пробовали оценить, например, эффекты связанные с температурным расширением (источник ведь работает неприрывно продолжительное время)? Небольшой перекос в источнике за счет этого - и вы имеете сдвиги в сантиметрах за счет расстояния до мишени». «Мой друг использовал вэб-камеру луч был в трубе,
иначе его «сдувало» труба подвешивалась вертикально. Что- то померять можно
было только ночью, про проходе поезда в километре от того места все плясало». Посмотрим, что
же всё-таки «намерил» Приставко на своей установке. Фильм,
который условно назовём «19 июля», показывает вращение установки в
горизонтальной плоскости на 360 градусов. В этом опыте автор зарегистрировал
многократные отклонения луча лазера от первоначального положения при повороте
установки. С небольшими вариациями видеокадры крайних положений установки имеют
следующий вид. Исходное (первоначальное) положение луча и максимальное
отклонение луча от исходного (первоначального) положения при повороте установки
(предположительно) на 90 градусов: Рис.6 Кадры из видеоклипа
В.Приставко в эксперименте с поворотом платформы вокруг вертикальной оси. Кадры
отобраны «на глазок», по их номерам. Считаем, что они соответствуют двум
положениям балки, отстоящим друг от друга на 90 градусов. При повороте
установки в вертикальной плоскости также зафиксировано отклонение. В фильме, который условно назовём «19 июля по
вертикали» производилося вращение установки в вертикальной плоскости до
положений «мишень снизу» и «мишень сверху» (в среднем, горизонтальном положении
балки луч совпадает с центром мишени): Рис.7 Кадры из видеоклипа
В.Приставко в эксперименте с поворотом платформы вокруг горизонтальной оси.
Кадры отобраны «на глазок», по их крайним положениям (максимальным отклонениям)
вверху и внизу. Отдельно
стоящим экспериментом является опыт с «длинным» лучом лазера (около 32 метров),
который сведён к двум фотокадрам в две различные даты: Рис.8 Фотоснимки В.Приставко
в эксперименте с неподвижным лазером и мишенью, расположенными на расстоянии
ок.32 м друг от друга. Кадры получены 7 мая и 20 мая. Как видим, за
приведённый интервал времени между двумя измерениями, пятно от луча лазера
сместилось на мишени. Фотокадры у автора имеют названия: «Начало наблюдений
7 мая в 11 часов 45 минут» и «Последнее измерение 20 мая 12 часов 42 минуты». Установка
Приставко, как и установка Довженко, является «панорамной». Это значит, что она
регистрирует вектор скорости во всех направлениях. Однако в видеофильмах
установка не привязана к определённому пространственному направлению, и по имеющимся
видеокадрам невозможно определить точку в Галактическом пространстве, куда эта
скорость направлена. Тем не менее, мы можем достаточно определённо выяснить
скалярную величину этой скорости. По опубликованным клипам Приставко можно
получить несколько значений этой скорости и сравнить их с известными значениями. Поскольку
прибор Приставко является панорамным, он отражает все значения абсолютной
скорости точки расположения прибора в пределах одного цикла (оборота).
Очевидно, что только одно значение является максимальным – это значение в
направлении вектора скорости. Если провести линию, соединяющую центр исходного
положения луча лазера с его центром в положении максимального отклонения, можно
получить линию (вектор), вдоль которой движется точка размещения установки, и в
пределах доступной точности измерения определить её абсолютную скорость.
Отклонение луча лазера на видеокадрах составляет в среднем около 3-4 мм при
вращении прибора в горизонтальной плоскости. Отношение смещения пятна к длине
луча (около 6 метров) составляет 1500-2000. Из этого получаем абсолютную скорость
порядка 150-200 км/сек. Это значение приблизительно совпадает с известными
скоростями движения точки на поверхности Земли в галактическом пространстве. Известно,
что скорость любой точки на поверхности Земли имеет три составляющие: скорость
вдоль поверхности Земли за счет суточного вращения, орбитальную скорость Земли
и скорость солнечной системы в галактическом пространстве. Последняя из этих
скоростей по разным данным имеет значение в пределах 200 - 600 км/сек.
Поскольку установка Приставко панорамная, она в обязательном порядке должна
была зафиксировать максимальное значение результирующей скорости движения, то
есть её значение должно было быть близко к 600 – 200 км/сек. Измерения
скорости при вращении установки в вертикальной плоскости дают другие значения. Поскольку
установка одна и та же, значения скоростей должны быть близкими. Тем не менее,
во втором случае отклонение (размах) составило около 13 мм, что соответствует
скорости 650 км/сек. Можно предположить, что завышенное значение скорости (по
отношению к первому измерению) вызвано влиянием прогиба балки. Когда лазер с
источником питания оказываются внизу (мишень на фоне неба), то, вследствие их
консольного закрепления, луч лазера «задирается» вверх (над балкой), что даёт
дополнительное отклонение к верхнему краю мишени. Наоборот, когда мишень внизу,
а лазер сверху, луч лазера «пригибается» к балке, что даёт дополнительное
отклонение уже в нижнему краю мишени. Как видим, получен 3-4-х кратный разброс
двух видов измерений, что не входит ни в какие рамки точности. В третьем
измерении (32-х метровый замер) зафиксировано отклонение приблизительно 16 мм, что
соответствует абсолютной скорости 150 км/сек. Насколько
результаты опытов Приставко достоверны, можно предположить, рассматривая
известные данные, полученные из других источников: «Солнце (и Солнечная
система) движется со скоростью 20 км/с в направлении к границе созвездий Лиры и
Геркулеса. Это объясняется местным движением внутри ближайших звезд. Эта точка
называется апексом движения Солнца». «Солнце движется к АПЕКСУ –
приблизительно к звезде ВЕГА со скоростью 20 км\сек. Сближаемся с Вегой со
скоростью 14 км\сек, т.к. она тоже движется» «Солнечная система
участвует во вращении вокруг центра Галактики со скоростью около 220 км/с. Это
движение происходит в направлении созвездия Лебедя». Приставко
получил результаты в трёх разнотипных экспериментах: вращение установки вокруг
вертикальной оси; вращение установки вокруг горизонтальной оси; измерение
отклонения на дистанции 32 метра. Первые два эксперимента дали несогласующиеся
результаты: величины полученных скоростей в них различаются в несколько раз.
Такой разброс экспериментальных результатов слишком велик для того, чтобы
сделать хоть какое-то заключение на их основе об абсолютной скорости Земли
(вернее, точки на её поверхности, в которой размещена измерительная установка
Приставко), и определить направление движения. Результаты третьего эксперимента получены 7 мая в 11 часов 45 минут и 20 мая 12 часов 42 минуты. Как видим, даты достаточно близки, следовательно, положение Земли на орбите изменилось не сильно. Кроме того, время практически совпадает, значит, векторы скорости в двух измерениях имеют близкие направления (почти коллинеарны). Поэтому такая большая разница в отклонениях (смещениях на мишени) лазерного луча является очевидной ошибкой. 4.
«Something is rotten in the State of
|