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Entanglement purification protocolEPP$ and quantum error-correcting codg€3ECCS provide two ways
of protecting quantum states from interaction with the environment. In an EPP, perfectly entangled pure states
are extracted, with some yield, from a mixed stateM shared by two parties; with a QECC, an arbitrary
quantum statg£) can be transmitted at some r&ethrough a noisy channg without degradation. We prove
that an EPP involving one-way classical communication and acting on mixed{ate (obtained by sharing
halves of Einstein-Podolsky-Rosen pairs through a chapngields a QECC ory with rateQ=D, and vice
versa. We compare the amount of entanglentg) required to prepare a mixed stad by local actions
with the amountd (M) andD,(M) that can be locally distilled from it by EPPs using one- and two-way
classical communication, respectively, and give an exact expressi&t¥by whenM is Bell diagonal. While
EPPs require classical communication, QECCs do not, and we @dgenot increased by adding one-way
classical communication. However, bdthand Q can be increased by adding two-way communication. We
show that certain noisy quantum channels, for example a 50% depolarizing channel, can be used for reliable
transmission of quantum states if two-way communication is available, but cannot be used if only one-way
communication is available. We exhibit a family of codes based on universal hashing able to achieve an
asymptoticQ (or D) of 1— S for simple noise models, whefis the error entropy. We also obtain a specific,
simple 5-bit single-error-correcting quantum block code. We prove that iff a QECC results in high fidelity for
the case of no error then the QECC can be recast into a form where the encoder is the matrix inverse of the
decoder[S1050-294@6)07711-9

PACS numbd(s): 03.65.Bz, 42.50.Dv, 89.78c

I. INTRODUCTION transmit unknown quantum states, rather than classical data,
from a sender to a receiver. To avoid violations of physical
law, the intact transmission of a general quantum state re-

Among the most celebrated features of quantum mechanyyires both a quantum resource, which cannot be cloned, and
ics is the Einstein-Podolsky-Rosghl (EPR) effect, in which 3 directed resource, which cannot propagate superluminally.
anomalously strong correlations are observed between preshe sharing of entanglement requires only the former, while
ently noninteracting particles that have interacted in the paspyrely classical communication requires only the latter. In
These nonlocal correlations occur Only when the quantur@uantum te|ep0rtatioﬁ5] the two requirements are met by
state of the entire system éntangledi.e., not representable o separate systems, while in the direct, unimpeded trans-
as a tensor product of states of the parts. In Bohm’s versiogission of a quantum particle, they are met by the same
of the EPR paradox, a pair of spin-1/2 particles, prepared ijystem. Quantum data compressjéi optimizes the use of

A. Entanglement and nonlocality in quantum physics

the singlet state quantum channels, allowing redundant quantum data, such as
a random sequence of two nonorthogonal states, to be com-

Wﬁ:i(”l)—HT)) (1) pressed to a bulk approximating its von Neumann entropy,

V2 ' then recovered at the receiving end with negligible distor-

tion. On the other hand, quantum superdense cddihgses

and then separated, exhibit perfectly anticorrelated spin conpreviously shared entanglement to double a quantum chan-
ponents when locally measured along any axis. Bglland  nel's capacity for carrying classical information.
Clauseret al.[3] showed that these statistics violate inequali- Probably the most important achievement of classical in-
ties that must be satisfied by any classical local hidden variformation theory is the ability, using error-correcting codes,
able model of the particles’ behavior. Repeated experimentdb transmit data reliably through a noisy channel. Quantum
confirmation[4] of the nonlocal correlations predicted by error-correcting code€QECCS [8—16] use coherent gener-
guantum mechanics is regarded as strong evidence in its falizations of classical error-correction techniques to protect
vor. guantum states from noise and decoherence during transmis-

Besides helping to confirm the validity of quantum me- sion through a noisy channel or storage in a noisy environ-
chanics, entanglement has assumed an important role ment. Entanglement purification protocolEPPsS [17]
guantum information theory, a role in many ways comple-achieve a similar result indirectly, by distilling pure en-
mentary to the role of classical information. Much recenttangled statege.g., singletsfrom a larger number of impure
work in quantum information theory has been aimed at charentangled state.g., singlets shared through a noisy chan-
acterizing the channel resources necessary and sufficient o®l). The purified entangled states can then be used for reli-
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able teleportation, thereby achieving the same effect as if whose spins, considered alone, appears to be in a maximally
noiseless storage or transmission channel had been availabieixed state with one bit of entropy. Paralleling the term
The present paper develops the quantitative theory of mixedubit for any two-state quantum systef@.g., a spins par-
state entanglement and its relation to reliable transmission dfcle), we define arebit as the amount of entanglement in a
guantum information. maximally entangled state of two qubits, or any other pure
Entanglement is a property of bipartite systems—systembipartite state for whicte=1.
consisting of two partA and B that are too far apart to Properties o that make it a natural entanglement mea-
interact, and whose state, pure or mixed, lies in a Hilbersure for pure states include the following.
space H="H,® Hg that is the tensor product of Hilbert (1) The entanglement of independent systems is additive,
spaces of these parts. Our goal is to develop a general theonyshared singlets, for example, havingebits of entangle-
of state transformations that can be performed on a bipartitement.
system without bringing the parts together. We consider (2) E is conserved under local unitary operations, i.e.,
these transformations to be performed by two observersynder any unitary transformatids that can be expressed as
“Alice” and “Bob,” each having access to one of the sub- a productU=U,®Ujg of unitary operators on the separate
systems. We allow Alice and Bob to perform local actions,subsystems.
e.g., unitary transformations and measurements, on their re- (3) The expectation o cannot be increased by local
spective subsystems along with whatever ancillary systemsonunitary operations: if a bipartite pure statds subjected
they might create in their own laboratories. Sometimes weo a local nonunitary operatiof@.g., measurement by Alige
will also allow them to coordinate their actions through one-resulting in residual pure stat&§ with respective probabili-
way or two-way classical communication; however, we doties p;, then the expected entanglement of the final states
not allow them to perform nonlocal quantum operations onz;p;E(Y;) is no greater, but may be less, than the original
the entire system nor to transmit fresh quantum states frorantanglemenE(Y) [20]. In the present paper we generalize
one observer to the other. Of course two-way or even onethijs result to mixed states: see Sec. Il A.
way classical communication is itself an element of nonlo-  (4) Entanglement can be concentrated and diluted with
cality that would not be permitted, say, in a local hiddenunit asymptotic efficiency20], in the sense that for any two
variable model, but we find that giving Alice and Bob the pipartite pure state¥ andY’, if Alice and Bob are given a
extra power of classical communication considerably ensupply ofn identical systems in a stafé=(Y)", they can
hances their power to manipulate bipartite states, withoufise local actions and one-way classical communication to
giving them so much power as to make all state transformapreparem identical systems in stat¥’~(Y')™, with the
tions trivially possible, as would be the case if nonlocalyie|d m/n approaching E(Y)/E(Y'), the fidelity

guantum operations were allowed. We will usually assumey’|(Y’)™|[? approaching 1, and probability of failure ap-
that HA and HB have equal dimensiohl (nO generality is proaching zero in the limit of |arga_
lost, since either subsystem'’s Hilbert space can be embedded \yith regard to entanglement, a pure bipartite stetés

in a larger one by local actions thus completely parametrized (YY), with E(Y) being
both the asymptotic number of standard singlets required to
B. Pure-state entanglement locally prepare a system in sta¥—its “entanglement of

For pure states, a sharp distinction can be drawn betwed@mation”—and the asymptotic number of standard singlets
entangled and unentangled states: a pure state is entangledigft can be prepared from a system in stateby local
nonlocal if and only if its state vectdf cannot be expressed ©Perations—its “distillable entanglement.
as a producly ,® Y g of pure states of its parts. It has been
show_n that every enta_lngled pure state violates some Bell- C. Mixed-state entanglement
type inequality{19], while no product state does. Entangled : ) .

One aim of the present paper is to extend the quantitative

states cannot be prepared from unentangled states by a L
theory of entanglement to the more general situation in

sequence of local actions of Alice and Bob, even with the" = k ,
help of classical communication. which Alice and Bob share mixedstateM, rather than a

Quantitatively, a pure state’s entanglement is convePUre statc—h{ as discussed above. Entangled mi>_<e_d_ states may
niently measured by its entropy of entanglement, arise(cf. Fig. 1) vyhen one or b(_)th parts o_f an initially pure
entangled state interact, intentionally or inadvertently, with
E(Y)=S(pa)=S(pg), (2)  other quantum degrees of freedgstown in the diagram as
noise processdd, andNg and shown explicitly in quantum
the apparent entropy of either subsystem considered alonehannely in Fig. 13 resulting in a nonunitary evolution of
Here S(p)=—Trplogyp is the von Neumann entropy and the pure stat& into a mixed statévl. Another principal aim
pa=Trg|Y)(Y] is the reduced density matrix obtained by is to elucidate the extent to which mixed entangled states, or
tracing the whole system’'s pure-state density matrixthe noisy channels used to produce them, can nevertheless be
|Y)(Y| over Bob's degrees of freedom. Similarly used to transmit quantum information reliably. In this con-
pe=TralYXY]| is the partial trace over Alice’s degrees of nection we develop a family of one-way entanglement puri-
freedom. fication protocols[17] and corresponding quantum error-
The quantitykE, which we shall henceforth often call sim- correcting codes, as well as two-way entanglement
ply entanglementranges from zero for a product state to purification protocols which can be used to transmit quantum
log,N for a maximally entangled state of tw-state par- states reliably through channels too noisy to be used reliably
ticles. E=1 for the singlet statel = of Eq. (1), either of  with any quantum error-correcting code.



3826 BENNETT, DiIVINCENZO, SMOLIN, AND WOOTTERS 54

.........................

NA 77777 i 1l T -0~:|7

maximally
M entangled

state

classical
communication—7

FIG. 1. Typical scenario for creation of entangled quantum FI_G" 2. Entanglerr_lent purification prot_ocol involving two-yvay
classical communicatio(2-EPB. In the basic step of 2-EPP, Alice

states. At some early time and at locatigrtwo quantum systems ) ) - . .
A andB interact{18], then become spatially separated, one going to@nd Bob subject the bipartite mixed state to two local unitary trans-

Alice and the other to Bob. The joint system’s state lies in a Hilbertfo'rm"’Itlonsul andU,. They then measure some of their particles

spaceH="H,® Hp that is the tensor product of the spaces of the M and mte_rchang_e t_he results of thesz_a measuremefatssical
subsystems, but the state itself is not expressible as a product gpta transmission indicated by double lineafter a number 9f
states of the subsystem¥:#Y ,®Yg. StateY, its pieces acted stages, such a Pr°t°°°' ce'\n produce a pure, near-maximally-
upon separately by noise procesbhsandNg, evolves into mixed entangled staténdicated by *3.
stateM. We also give lower bounds on the entanglement of formation

The theory of mixed-state entanglement is more compliof other, more general mixed states. Nonz&(M) will
cated and less well understood than that of pure-state efdain serve as our quall_tatlve criterion of nonlocality; thus, a
tanglement. Even the qualitative distinction between loca[lx€d state will be considered local if can be expressed as a
and nonlocal states is less clear. For example, Wei2&r mlxture_ of_ product states, and nonlocal if it cannot. _
has described mixed states which violate no Bell inequality . BY distillable entanglemenwe will mean the asymptotic
with regard to simple spin measurements, yet appear to pyeld of_ arbitrarily pure singlets that can t_)(_e pr_epared locally
nonlocal in other subtler ways. These include improving thd"®M mixed stateM by entanglement purification protocols
fidelity of quantum teleportation above what could be EPP$ involving one-way or two-way communication be-
achieved by purely classical communicatf@2], and giving tween Alice and pr. 'Dlst|lla.ble entanglement for one- and
nonclassical statistics when subjected to a sequence of me}f0-way communication will be denoted,(M) and
surement$23]. D,(M), respectively. Except in cases where we have been

Quantitatively, no single parameter completely character@Ple to prove thab, or D is identically zero, we have no
izes mixed state entanglement the viagloes for pure states. e?<p_I|C|t yalues for distillable entanglement, but we W!|| ex-
For a generic mixed state, we do not know how to distill outNiPit various upper bounds, as well as lower bounds given by
of the mixed state as much pure entanglenterg., standard "€ Yield of particular purification protocols.
singlets as was required to prepare the state in the first
place; moreover, for some mixed states, entanglement can b Entanglement purification and quantum error correction
distilled with the help of two-way communication between  gptanglement purification protocols will be the subject of
Alice and Bob, but not with one-way communication. In g |arge portion of this paper; we describe them briefly here.
order to deal with these complications, we introduce threerne most powerful protocols, depicted in Fig. 2, involve
entanglement measurd3,(M)<D,(M)<E(M), each of  tyo.way communication. Alice and Bob begin by sharing a
which reduces td for pure states, but at least two of which bipartite mixed stateM =(M)" consisting ofn entangled
(D; and D,) are known to be inequivalent for a generic pajrs of particles each described by the density matix
mixed state. _ then proceed by repeated application of three stgpsilice

Our fundamental measure of entanglement, for which weyng Bob perform unitary transformations on their stat@s;
continue to use the symbd, will be a mixed state’®n-  they perform measurements on some of the particles{2ind
tanglement of formation @), defined as the least expected they share the results of these measurements, using this in-
entanglement of any ensemble of pure states realiding formation to choose which unitary transformations to per-
We show that local actions and classical communication carfgrm in the next stage. The object is to sacrifice some of the
not increase the expectation &(M) and we give exact particles, while maneuvering the others into a close approxi-
expressions for the entanglement of formation of a simplenation of a maximally entangled state such¥as (¥ )™,
class of mixed states: states of two spiparticles that are the tensor product ah singlets, where &m<n. No gener-
diagonal in the so-calle@ell basis This basis consists of ality is lost by using only unitary transformations and von
four maximally entangled states — the singlet state of EQNeumann measurements in stéfs and (2), because Alice

(1), and the three triplet states and Bob are free at the outset to enlarge the Hilbert spaces
1 Ha andHg to include whatever ancillas they might need to
Y= i , 3 perform nonunitary operations and generalized measure-
\/E(Hl) ) ® ments on the original systems.

A restricted version of the purification protocol involving
1 only one-way communication is illustrated in Fig. 3. Here,
—(T=[LLY). (4 without loss of generality, we permit only one stage of uni-
V2 tary operation and measurement, followed by a one-way

O*=
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This state, a 5/8 vs 3/8 singlet-triplet mixture, can be pro-
duced by mixing equal amounts of singlets and random un-
correlated spins, or equivalently by sending one spin of an
initially pure singlet through a 50% depolarizing channel.
(An x-depolarizing channel is one in which a state is trans-
mitted unaltered with probability 1 x and is replaced with a

U, z * completely random qubit with probability.) These recipes
suggest thaE(Wsg), the amount of pure entanglement re-
quired to prepare a Werner state, might be 0.5, but we show

FIG. 3. One-way entanglement purification proto¢BiEPB. In (Sec. I that in fact thatE(Ws,g) ~0.117. The Werner state
1-EPP there is only one stage; after unitary transformatiprand ~ Wsg is also remarkable in that pure entanglement can be
measuremeni, Alice sends her classical result to Bob, who usesdistilled from it by two-way protocols but not by any one-
it in combination with his measurement result to control a finalway protocol. In terms of noisy-channel coding, this means
transformationUs. The unidirectionality of communication allows that a 50% depolarizing channel, which has a positive capac-
the final, maximally entangled stat&) to be separated both in ity for transmitting classical information, has zero capacity
space and in time. for transmitting intact quantum states if used in a one-way

fashion, even with the help of quantum error-correcting
classical communication. The principal advantage of such @odes. This will be proved in Sec. IV. If the same channel is
protocol is that the components of the resulting purifiedysed in a two-way fashion, or with the help of two-way
maximally entangled state indicated by * can be separateglassical communication, it has a positive capacity due to the
both in spaceand in time In Secs. V and VI we show that nonzero distillable entanglemeBt,(Wsg), which is known
the time-separated EPR pairs resulting from such a one-way Jie between 0.004 57 and 0.117 pure singlets out per im-
protocol (1-EPP always permit the creation of a quantum pyre pair in. The lower bound is from an explicit 2-EPP,
error-correction cod¢QECQO whose rate and fidelity are, while the upper bound comes from the known entanglement
respectively, equal to the yield/n and fidelity of the puri-  of formation, which is always an upper bound on distillable
fied states produced by the 1-EPP. entanglement.

The link between 1-EPP and QECC is provided by quan- The remainder of this paper is organized as follows. Sec-
tum teleportatiori5]. As Fig. 4 illustrates, the availability of tjon Il contains our results on the entanglement of formation
the time-separated EPR state) means that an arbitrary of mixed states. Section Il explains purification of pure,
quantum statg¢) (in a Hilbert space no larger thaf’gcan  maximally entangled states from mixed states. Section IV
be teleported forward in time: the teleportation is initiatedexhibits a class of mixed states for whidh;=0 but
with Alice’s Bell measuremeniM,, and is completed by D,>0. Section V shows the relationship between mixed
Bob’s unitary transformatiotd,. The net effect is that an  states and quantum channels. Section VI shows how a class
exact replica of¢) reappears at the end, despite the presencef quantum error-correction codes may be derived from one-
of noise (Nag) in the intervening quantum environment. way purification protocols and contains our efficient 5-qubit
Moreover, we will show in detail in Sec. VI that the protocol code. Finally, Sec. VIl reviews several important remaining
of Fig. 4 can be converted into a much simpler protocol withopen questions.
the same quantum communication capacity but involving
neither entanglement nor classical communication, and hav- Il. ENTANGLEMENT OF FORMATION
ing the topology of a quantum error correcting c@gey. 16
[8-16].

Many features of mixed-state entanglement, along with As noted above, we define the entanglement of formation
their consequences for noisy-channel coding, are illustrateBl(M) of a mixed statéV as the least expected entanglement
by a particular mixed state, the Werner stgé], of any ensemble of pure states realizivig The point of this
subsection is to show that the designation “entanglement of
formation” is justified: in order for Alice and Bob to create
the stateM without transferring quantum states between
B B them, they must already share the equivalenE@$1) pure

+H[OTN(DPT]). (5) singlets; moreover, if they do share this much entanglement
already, then they will be able to credté. (Both of these
) statements are to be taken in the asymptotic sense explained
1&) in the Introduction. In this senseE(M) is the amount of
; @ entanglement needed to credfe
\ Consider any specific ensemble of pure states that realizes
1-EPP 7 15 the mixed stateM. By means of the asymptotically
* entanglement-conserving mapping between arbitrary pure
states and singlet§20], such an ensemble provides an

FIG. 4. If the 1-EPP of Fig. 3 is used as a module for creatingdSymptotic recipe for locally preparird from a number of
time-separated EPR paifs), then by using quantum teleportation Singlets equal to the mean entanglement of the pure states in
[5], an arbitrary quantum staté) may be recovered exactly after the ensemble. Clearly some ensembles are more economical
U,, despite the presence of intervening noise. This is the desirethan others. For example, the totally mixed state of two qu-
effect of a quantum error-correcting cot@ECQ). bits can be prepared at zero cost, as an equal mixture of four

A. Justification of the definition

5 1
Weg=g | W W W™ |+ g (W W W[ +[07 NP7




3828 BENNETT, DiIVINCENZO, SMOLIN, AND WOOTTERS 54

product states, or at unit cost, as an equal mixture of the fous weighted mean of several density matrices is no less than

Bell states. The quantitiE(M) is the minimum cost in this the corresponding mean of their separate entropis.

sense. However, this fact does not yet justify calllbg\) Therefore

the entanglement of formation, because one can imagine

more complicated recipes for preparii: Alice and Bob

could conceivably start with an initial mixture whose ex- S(p)22k PSPk

pected entanglement is less thB(M) and somehow, by

local actions and classical communication, transform it intoBut the left-hand side of this expression is the original pure

another mixture with greater expected entanglement. Wetate's entanglement before measurement, while the right-

thus need to show that such entanglement-enhancing tranisand side is the expected entanglement of the residual pure

formations are not possible. We start by summarizing thestates after measurement. QED.

definitions that lead t&(M). Lemma Consider a tripartite pure staté, in which the
Definition The entanglement of formation of a bipartite parts are labeled, B, andC. (We imagine Alice holding

pure state Y is the von Neumann entropyE(Y) parts A and C and Bob holding part B.) Let

=S(Tra|Y)(Y]) of the reduced density matrix as seen byM=Trc|Y)(Y|. ThenE(M)<E(Y), where the latter is un-

Alice or Bob[see Eq(2)]. derstood to be the entanglement between Bob’s paaind
Definitiont The entanglement of formatida(&) of an en-  Alice’s partAC. That is, Alice cannot increase the minimum

semble of bipartite pure states={p;,Y;} is the ensemble expected entanglement by throwing away sys@m

averageZ;p;E(Y;) of the entanglements of formation of the  Proof Again, whatever pure-state ensemble one takes as

pure states in the ensemble. the realization of the mixed stafd, the entropy at Bob’s
Definitiort The entanglement of formatidg(M) of a bi- end of theaverageof these states must equa{Y), because

partite mixed stateM is the minimum of E(£) over en-  the density matrix held by Bob has not changed. By the

sembles &={p;,Y;} realizing the mixed state: above argument, then, the average of the entropies of the

M=3pi| YiX(Yil. reduced density matrices associated with these pure states
We now prove thaE(M) is nonincreasing under local cannot exceed the entropy of Bob’s overall density matrix;

operations and classical communication. First we prove twahat is,E(M)<E(Y). QED.

lemmas about the entanglement of bipantitee states under We now prove a theorem that extends both of the above

local operations by one party, say Alice. Any such local actesults to mixed states.

tion can be decomposed into four basic kinds of operations: Theorem If a bipartite mixed statéVl is subjected to an

(i) appending an ancillary system not entangled with Bob’soperation by Alice, giving outcomek with probabilities

part, (i) performing a unitary transformatioiji) perform-  p, , and leaving residual bipartite mixed statdg, then the

ing an orthogonal measurement, dnd throwing away, i.e., expected entanglement of formatiahp,E(M,) of the re-

tracing out, part of the systenfThere is no need to add sidual states is no greater than the entanglement of formation

generalized measurements as a separate category, since sgg¢vl) of the original state.

measurements can be constructed from operations of the

above kinds. It is clear that neither of the first two kinds of

operation can change the entanglement of a pure state shared zk: PE(M)<E(M). ®

by Alice and Bob: the entanglement in these cases remains

equal to the von Neumann entropy of Bob’s part of the sysqif the operation is simply throwing away part of Alice’s

tem. However, for the last two kinds of operations, the eNsystem, then there will be only one value kyf with unit
tanglement can change. In the following two lemmas wepropapility)

show that the expected entanglement in these cases cannotpyqgof Given mixed stateM there will exist some

@)

increase. o _ _ minimal-entanglement ensemble
Lemma If a bipartite pure stat&” is subjected to a mea-
surement by Alice, giving outcomek with probabilities E={p;,Y;} 9)

px. and leaving residual bipartite pure statég, then the
expected entanglement of formatiahpE(Y ) of the re-  of pure states realiziniyl.
sidual states is no greater than the entanglement of formation For any ensemblé’ realizingM,
E(Y) of the original state.
E(M)<E(&). (10

Ek PEY W <EY). 6) Applying the above lemmas to each pure state in the
minimal-entanglement ensemife we get, for each,

Proof. Because the measurement is performed locally by
Alice, it cannot affect the reduce_d dens[ty matrix seen by D PEM)=<E(Y)), (11)
Bob. Therefore the reduced density matrix seen by Bob be- K
fore measuremenp=Tra| Y ){Y|, must equal the ensemble
average of the reduced density matrices of the residual stateghereM, is the residual state if pure staYg is subjected to
after measuremenpy =Tra|Y)(Y,| after measurement. It Alice’s operation and yields resuk, and p; is the condi-
is well known that von Neumann entropy, like classicaltional probability of obtaining this outcome when the initial
Shannon entropy, is convex, in the sense that the entropy state isY; .
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Note that when the outconie has occurred the residual F parts pure singlet, and (1F)/3 parts of each of the other

mixed state is described by the density matrix Bell states — that is, a generalization of Ef):
- - 1-F + + + +
Mk:; PijkM i - (12 We=F|¥~)(¥ |+T(|‘I’ HET|+H][DT (DT
Multiplying Eq. (11) by p; and summing ovej gives +[@TNDT)). (17)

This is equivalent to saying it is drawn from an ensemble of
Zk PP EM)=<> piE(Y))=E(M). (13  x=(4F—1)/3 parts pure singlet, and-1x parts the totally
I ! mixed “garbage” density matriXequal to the identity op-

By Bayes theorem, erato)
_ _ 1
Pik= PP = PiPi (149 G=1=Z (1W )W |+ W) (W |+ K|
Eq. (13) becomes o
+@TN (D)), (19)

Zk PP KE(Mji) <E(M). (15  which was Werner's original formulation. We label these

I generalized Werner stat&¥: , with their F value, which is
Using the bound Eq(10), we get their fidelity or purity (W~ |Wg|W ™) relative to a perfect

singlet(even though this fidelity is defined nonlocally, it can
be computed from the results of local measurements, as
% pkE(Mk)$% P> PiKE(Mj)<E(M). (16) 1—3P/3, whereP| is the probability of obtaining parallel
! outcomes if the two spins are measured along the same ran-
QED. dom aXiQ.

Although the above theorem concerns a single operation 't would take x=(4F—1)/3 pure singlets to create a
by Alice, it evidently applies to any finite preparation proce-Mixed stateWg by directly implementing Werner's en-
dure, involving local actions and one- or two-way classicalSémble. One might assume that this prescription is the one
communication, because any such procedure can be ef€quiring the. least entanglement, so that\itig, state Would_
pressed as sequence of operations of the above type, p&QSF 0_.5 _eblts to prepare. However, through a numerical
formed alternately by Alice and Bob. Each measurementMinimization technique we found four pure states, each hav-
type operation, for example, generates a new classical resulfld only 0.117 ebits of entanglement, that when mixed with
and partitions the before-measurement mixed state into re&dqual probabilities create thé/ss mixed state much more
sidual after-measurement mixed states whose mean entangfonomically. Below we derive an explicit minimally en-
ment of formation does not exceed the entanglement of foriangled ensemble for any Bell-diagonal mixed stétgin-
mation of the mixed state before measurement. Hence weluding the Werner state#/r as a special case, as well as a
may summarize the result of this section by saying that ex@iving a general lower bound for general mixed stdtesf
pected entanglement of formation of a bipartite system’st pair of spins particles. For pure states and Bell-diagonal
state does not increase under local operations and classid@ixturesE(M) is simply equal to this bound.
communication. As noted ifi20], entanglement itseltan The lower bound is expressed in terms of a quantity
increase under local operations, even though its expectatioi{M) which we call the “fully entangled fraction”oM and
cannot. Thus it is possible for Alice and Bob to gamble withdefine as
entanglement, risking some of their initial supply with a
chance of winning more than they originally had. f(M)=maxe[M|e), 19

where the maximum is over all completely entangled states

|e). Specifically, we will see that for all states of a pair of
In the preceding subsection it was shown that an enspin+4 particles,E(M)=h[f(M)], where the functiorh is

semble ofpure statesvith minimum average pure-state en- defined by

tanglement realizing a given density matrix defines a maxi-

B. Entanglement of formation for mixtures of Bell states

mally economical way of creating that density matrix. In H[ i+ f(1—f)] for f= 1
general it is not known how to find such an ensemble of h(f)= (20
minimally entangled states for a given density maMxWe 0 for f< 3.

have, however, found such minimal ensembles for a particu-
lar class of states of two spiparticles, namely, mixtures Here H(x)= —xlog,x—(1—x)logy(1—x) is the binary en-
that are diagonal when written in the Bell basis Eds, (3),  tropy function. For mixtures of Bell states, the fully en-

and(4). We have also found a lower bound &(M) appli- tangled fractionf(M) is simply the largest eigenvalue of
cable to any mixed state of two spinparticles. We present M.
these results in this subsection. We begin by considering the entanglement of a single

As a motivating example consider the Werner states ofpure statd ¢). It is convenient to writé ¢) in the following
[21]. A Werner state is a state drawn from an ensemble obrthogonal basis of completely entangled states:
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le))=[®"),
lex)=i[®7),
leg)=i[¥™),
lea)=|¥"). (21
Thus we write
4
|¢>=J_Zl ajle)). (22

The entanglement df¢) can be computed directly as the

von Neumann entropy of the reduced density matrix of eithe:l.
of the two particles. On doing this calculation, one finds tha

the entanglement df) is given by the simple formula

E=H[ 3(1+1-C?)],

(23

where C=|Ejaj2|. (Note that one is squaring the complex

numbersy;, not their moduli) E andC both range from 0 to
1, andE is a monotonically increasing function &f, so that
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We now move from pure states to mixed states. Consider
an arbitrary mixed stateM, and consider any ensemble
E=py, P Which is a decomposition d¥l into pure states

M =§ Pil i) Bid - (26)

For an arbitrary completely entangled stafe), let
wi=|(e|p )%, and let w=(e|M|e)=Z,pw,. We can
bound the entanglement of the ensem(@@) as follows:
=h(w).
(27)

his equation is true in particular for the minimal entangle-

E(e>=§ pkE<|¢k>>>2k pkh(wk)Bh[; PWy

tment ensemble realizinyyt for which E(M)=E(£). The

second inequality follows from the convexity of the function
h. Clearly we obtain the best bound of this form by maxi-
mizing w=(e|M|e) over all completely entangled states
|e). This maximum value ofv is what we have called the
fully entangled fractiorf (M). We have thus proved that

E(M)=h[f(M)], (28

C itself is a kind of measure of entanglement. According to

Eq. (23), any real linear combination of the statge;) is
another completely entangled stéte.,E=1). In fact,every

as promised.
To make the boun@8) more useful, we give the follow-

completely entangled state can be written, up to an overaihg simple algorithm for finding the fully entangled fraction

phase factor, as a real linear combination of fia¢’s. (To
see this, choose; to be real without loss of generality. Then
if the othera;’s are not all realC will be less than unity, and
thus so willE.)

Note that if one of they;’s, sayay, is sufficiently large in
magnitude, then the other;’s will not have enough com-
bined weight to mak€& equal to zero, and thus the state will

f of an arbitrary stat® of a pair of qubits. First, writd/ in

the basis{|e;)} defined in Eq.(21). In this basis, the com-
pletely entangled states are represented by the real vectors,
so we are looking for the maximum value (§|M|e) over

all real vectorgle). But this maximum value is simply the
largest eigenvalue of the real part ldf. We have thenf is

the maximum eigenvalue of Rd, whenM is written in the

have to have some entanglement. This makes sense: if ola@sis of Eq.(21). _ _
particular completely entangled state is sufficiently strongly We now show that the bouri@8) is actually achieved for

represented ifg), then| ¢) itself must have some entangle-

ment. Specifically, iffa;|?>3, then because the sum of the
squares of the three remaining’s cannot exceed % |a;|?

in magnitude,C must be at leasta,|?—(1—|a4|?), i.e.,
2|aq|?—1. It follows from Eq.(23) that E must be at least

H[ %+ V[aq|?(1—[aq]?)]. That is, we have shown that
E(|#))=h(|ay]?), (24)

whereh is defined in Eq(20). This inequality will be very
important in what follows.

two cases of interesti) pure states an@i) mixtures of Bell
states. That is, in these cas&gM)=h[f(M)].

(i) Pure statesAny pure state can be changed by local
rotations into a statg25] of the form|p)=a|1 1)+ 8|1 ]),
wherea, 3=0 anda®+ 82=1. Entanglement is not changed
by such rotations, so it is sufficient to show that the bound is
achieved for states of this form. Fot =|¢){ ¢|, the com-
pletely entangled state maximiziig|M|e) is |® *), and the

value of f is [(®"|¢)|?=(a+B)%2=3+ apB. By straight-
forward substitution one finds thah(%+aB)=H(a?),
which we know to be the entanglement 6$#). Thus

As one might expect, the properties just described are ngt(M)=h[f(M)], which is what we wanted to show.

unique to the basi|e;)}. Let [e])==R|ey), whereR is
any real, orthogonal matrig.e., R"TR=1). We can expand
|¢) as|¢)=2a]|e]), and the sunE;a;? is guaranteed to

be equal toEjajz because of the properties of orthogonal

transformations. Thus one can use the componehis Eq.
(23) just as well as the components . In particular, the
inequality (24) can be generalized by substituting fey the
component of|¢) along any completely entangled state
le). That is, if we definev=|(e|4)|* for some completely
entanglede), then

E([#)=h(w). (25

(i) Mixtures of Bell statesConsider a mixed state of the
form

4
W:,Zl pile;)(ejl. (29)
Suppose first that one of the eigenvalpess greater than or
equal to3, and without loss of generality take this eigenvalue
to be p;. The following eight pure states, mixed with equal
probabilities, yield the stateV:

Vpaler) +i(= Vpales) = Vpsles) = Vpgles)).

(30
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Moreover, all of these pure states have the same entangl@&hus, in order for Eq(34) to be true, thex’s must be con-
ment, namely, sistent with the following conditions:

E h(pl)- (31) ; pk|a’k,1|2:%1 ,

[See EQq.(23).] Therefore the average entanglement of the

mixture is also(E)=h(p,). But p,=f(W) for this density

matrix, so for this particular mixture, we have E pklak,z|2=% )

(Ey=h[f(W)]. Since the right-hand side is our lower bound K

on E, this mixture must be a minimum-entanglement decom-

position of W, and thusE(W) = h[ f(W)]. > pdad®=3, (37
If none of the eigenvalueg; is greater thar}, then there K ’

exist phase factorg; such thatZ;p;e' %=0. In that case we

can expres¥V as an equal mixture of a different set of eight 2_
states: Ek Pl @y d*=0,

Vp1€' "2 e)) + Vp,e' 22 e,) + \pge! ¥ e;)
+p,e' P42 ey). (32)

For each of these states, the quanBtyEq. (23)] is equal o Evidently all thea /s are equal to zero. By Ed35) the
zero, and thus the entanglement is zero. It follows thaf€Maininga’s satisfy

E(W)=0, so that again the bound is achievéfhe bound
h[ f(W)] is zero in this case becaus$ethe greatest of the

p;’s, is less tharg.) In fact, the “=" of this last relation must be an equality, or

It is interesting to ask whether the bouhfif(M)] is in  g|se the sum conditions of E(87) would not work out. That
fact alwaysequal toE(M) for general mixed statelsl, not s,

necessarily Bell-diagonal. It turns out that it is not. Consider,
for example, the mixed state | 1|+ | o?=ay 4% for everyk. (39

i
*
o o =—.
Ek Prak 12y 2 4

|1+ | d*=|ay 4*  for everyk. (39

M= |TTW1 1|+ 3wt w]. (33  Combining this last equation with E¢35), we arrive at the
conclusion that for eack, the ratio ofay ; to «y , is real. But
The value off for this state is}, so thath(f)=0. And yet, as in th_at case there is no way to generate t_he imaginary sum
we now show, it is impossible to build this state out of un-reéquired by the last of the conditiort87). It is thus impos-
entangled pure states; here@M) is greater than zero and is sible to build M out of unentangled pure states; that is,
not equal toh(f). E(M)>0. _
To see this, let us try to construct the density matrix of W& conclude, then, that our bound is only a bound and

Eqg. (33) out of unentangled pure states. That is, we want not an exact formula foE. It turns out, in fact, that there are
two other ways to prove that the stdi has nonzero en-

tanglement of formation. Perd26] and Horodeckiet al.
M 22 Pl P Pl (34) [27] have recently developed a general test for nonzero en-
. tanglement for states of two qubits and has applied it explic-
itly to states like ourM, showing thatE(M) is nonzero.
Also, in Sec. Il B2 below, we show that one can distill
some pure entanglement from, which would not be pos-
sible if E(M) were zero.

where each ¢,) is unentangled. That is, ea¢h,) is such
that when we write it in the basis of Ed21), i.e., as
|y =3]_10xle)), the a’s satisfy the condition

4
>, a2;=0. (35) IIl. PURIFICATION
="

Suppose Alice and Bob have pairs of particles, each

Now the density matrixV, when written in thele;) basis, ~pair's state described by a density mathix Such a mixed
looks like this: state results if one or both members of an initially pure Bell

state is subjected to noise during transmission or stofefge

Fig. 1). Given thesen impure pairs, how many pure Bell
singlets can they distill by local actions; indeed, can they
distill any at all? In other words, how much entanglement

can they “purify” out of their mixed state without further

(36) use of a quantum channel to share more entanglement?
The complete answer is not yet known, but upper and

0 lower bounds ar¢17]. An upper bound i€E(M) per pair,

because if Alice and Bob could get more good singlets than
0 that they could use them to create more mixed states with

N N
o
o

o
o

O Nk
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o ; ey ment of all our protocols. However, as we show in Appendix
Na | Tﬁ@/ B, all the purification protocols we will develop will also
work just as well on the original non-Bell-diagonal mixtures
M.
I v M W (3) Bell states map onto one another under several kinds
\ of local unitary operationscf. Table ). These three sets of
----------- operations are of two typeanilateral operations, which are

; : ® performed by Bob or Alice but not both, ahilateral opera-
B : tions, which can be written as a tensor product of an Alice
part and a Bob part, each of which are the same. The three

FIG. 5. The general mixed stal of Fig. 1 can be converted types of operations used ai® unilateral rotations byr rad,
into one of the Werner formiV of Eq. (17) if the particles on both ~ corresponding to the three Pauli matrices, oy, ando;
Alice’s and Bob’s side are subjected to the same random rotatio2) bilateral rotations byw/2 rad, henceforth denotes,,

R [we refer to the act of choosing a random (@Urotation and By, andB,; and(3) the bilateral application of the two-bit
applying it to both particles as a “twirl’T]. quantumxor (or controlled-NoT) [32,33, hereafter referred
to as theBxOR operation(see Fig. 6. These operations and

density matrixM than the number with which they started, the Bell state mappings they implement, along with indi-
thereby increasing their entanglement by local operationsvidual particle measurements, are the basic tools Alice and
which we have proven impossibi8ec. Il A). Lower bounds Bob use to purify singlets out o&.
are given by construction. We have found specific proce- (4) Alice and Bob can distinguistb states from¥” states
dures which Alice and Bob can use to purify certain types ofoy locally measuring their particles along thedirection. If
mixed states into a lesser number of pure singlets. We cathey get the same results they havé aif they get opposite
these schemesntanglement purification protocolEPP3,  results they have &. Note that if only one of the observers
which should not be confused with thgurificationsof a  (say, Bob needs to know whether the state wasbaor a
mixed state of28]. ¥, the process can be done without two-way communica-
tion. Alice simply makes her measurement and sends the
result to Bob. After Bob makes his measurement, he can then

A. Purification basics determine whether the state had beed® ar a¥ by com-
Our purification procedures all stem from a few simple paring his measurement result with Alice’s, without any fur-
ideas. ther communication.
(1) A general two-particle mixed stat®! can be con- (5) For convenience we takab*) as the standard state

verted to a Werner staté/ [Eq. (17)] by an irreversible for the rest of the paper. This is because it is the state which,
preprocessing operation which increases the entropywhen used as both source and target iBX®R, remains
[S(Wg)>S(M)], perhaps wasting some of its recoverableunchanged. It is not necessary to use this convention but it is
entanglement, but rendering the state easier to deal with b@lgebraically simpler. We note thib ) states can be con-
cause it can thereafter be regarded as a classical mixture werted to singlet | 7)) states using the unilateral, rota-

the four orthogonal Bell statd€qgs. (1), (3), and(4)] [29].  tion, as shown in Table I. The only complication is that the
The simplest such preprocessing operationarsdom bilat-  nonunitary twirling operatiorT of item 1 works only when
eral rotation [17] or “twirl,” consists of choosing an inde- |¥ ) is taken as the standard state. But a modified twirl
pendent, random SW) for each impure pair and applying it T’ which leaves|®*) invariant and randomizes the other
to both members of the paiicf. Fig. 5. Because of the three Bell states may easily be constructed: the modified
singlet state’s invariance under bilateral rotation, twirling hastwirl would consist of a unilaterabr, (which swaps the
the effect of removing off-diagonal terms in the two-particle |®*)’s and |¥ ~)’s) followed by a conventional twirlT,
density matrix in the Bell basis, as well as equalizing thefollowed by another unilaterat, (which swaps them bagk
triplet eigenvalues. Actually, removing the off-diagonal (6) The preceding points all suggest a new notation for the
terms is sufficient as all of our EPPs operate successfullfell states. We use two classical bits to label each of the Bell
(with only minor modification on a Bell-diagonal mixed states and write

stateW with, in general, unequal triplet eigenvalues. Equal-

ization of the triplet eigenvalues only adds unnecessary en- @* =00,

tropy to the mixture. In Appendix A it is shown that a con-

tinuum of rotations is unnecessary: an arbitrary mixed state V=01,

of two qubits can be converted into a Wern&g or Bell-

diagonalW mixture by a “discrete twirl,” consisting of a &~ =10,

random choice among an appropriate discrete set of bilateral

rotations[30]. We useT to denote the nonunitary operation v =11. (40

of performing either a discrete or a continuous twirl.

(2) Once the initial mixed stat® has been rendered into The right, low-order or “amplitude” bit identifies thé/¥
Bell-diagonal formW, it can be purified as if it were a clas- property of the Bell state, while the left, high-order or
sical mixture of Bell states, without regard to the original “phase” bit identifies the+/— property. Both properties
mixed stateM or the noisy channé&) that may have gener- could be distinguished simultaneously by a nonlocal mea-
ated it[31]. This is extremely convenient for the develop- surement, but local measurements can only distinguish one
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TABLE I. The unilateral and bilateral operations used by Alice and Bob to map Bell states to Bell states.
Each entry of thexor table has two lines, the first showing what happens to the source state, the second
showing what happens to the target state.

Source
v (Ol o vt
| = o o+ v
Unilateral 7 rotations: oy - v vt o
oy i o v o
o, vt o+ o v
Source
v (o} ot vt
| V- i i vt
Bilateral 77/2 rotations: B, v - P bt
B, = vt i o
B, = o+ o v
Source
Target v d- d* v
Pt ot d- v (source
A\ (O A\ o (OX (targe}
vt o o~ L\ (source
Bilateral XOR: (O3 A\ (o} (O} v (targe}
o o~ o vt (source
o+ vt o o vt (targed
v o~ b+ v (source
pt o P vt o+ (targe}

of the properties at a time, randomizing the other. For eximen), while maneuvering the remaining pairs into a col-

ample, a bilaterat spin measurement distinguishes the am-lective stateM’ whose fidelity((® ")™|M'|(® *)™) relative

plitude while randomizing the phase. to a product ofm standard®* states approaches 1 in the
limit of large n. The yield a purification protocd? on input

I mixed statedM is defined as
B. Purification protocols
We now present several two- and one-way purification Dp(M)= lim m/n. (41)
protocols. All begin with a large collection of impure pairs n=

each in mixed stat&, use upn—m of them (by measure-  |f the original impure pair arise from sharing pure EPR
pairs through a noisy channgl then the yieldDp(M) de-
fines the asymptotic number of qubits that can be reliably
transmitted(via teleportation per use of the channel. For
A N one-way protocols the yield is equal to the rate of a corre-
W AN sponding quantum error-correcting codgf. Sec. \j. For
- NN - two-way protocols, there is no corresponding quantum error-
Y AN ~¥Y correcting code. We will compare the yields from our proto-
(I)+ d \\P+ cols with the rates of quantum error-correcting codes intro-
S duced by other authors, and with known upper bounds on the
s one-way and two-way distillable entanglemebtg(W) and
. D,(W). These are defined in the obvious way, e.g.,
D1(W)=maxDp(W):P is a 1-EPP. No entanglement puri-
fication protocol has been proven optimal, but all give lower
FIG. 6. TheexoR operation. A solid dot indicates the source bit POUnds on the amount of entanglement that can be distilled

of anxor operation32] and a crossed circle indicates the target. In from various mixed states.
this example al ~ state is the source andda’ is the target. If the
pairs are later brought back together and measured in the Bell basis
the source will remain aF ~ and the target will have become a A purification procedure presented originally{iti7] is the
W', as per Table I. recurrence method. This is an explicitly two-way protocol.

1. Recurrence method
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TABLE II. Probabilities for each initial configuration of source

and target in a pair of Bell states drawn from the same ensemble, 1
and the resulting state configuration afteBxoR operation is ap- 09 T e
plied. The final column shows whether the target state pafses 08 T
fails (F) the test for being parallel along tlzeaxis (this is given by 0.7 T
the rightmost bit of the target state after thgor). This table, 0.6 T
ignoring the probability column, is just thexor table of Table | 05 <+
written in the bitwise notation of iten6) of Sec. Il A. 04 +
0.3+ ppass
Initial After BXOR Test 0.2 4 2
Probability S T S T result 01+
P3o 00 00 00 00 P 0 ) ) ' ' )
PooPor 00 01 00 o1 = 0 0.2 04 0.6 0.8
PooP10 00 10 10 10 P F
PooP11 00 11 10 11 F o
PotPoo o1 00 01 o1 = FIG. 7. Effect on the fidelity of Werner states of one step of
D2 o1 o1 o1 00 p purification, using the recurrence protodélis the initial fidelity of
o1 the Werner statEq. (17)], F' is the final fidelity of the “passed”
PoiP10 01 10 11 11 F ; = ) . ;
pairs after one iteration. Also shown is the fractigg,sJ2 of pairs
Po1P11 01 11 11 10 P remaining after one iteratiofcf. Eq. (43)].
P10Poo 10 00 10 00 P
P1oPo1 10 01 10 01 F . .
P2, 10 10 00 10 = tion. Both Alice and Bob need to know the results of the test
P1Ps 10 11 00 11 = in order to determine which pairs to discard.
D11P00 11 00 11 o1 F The members of _the “passed_” subset have a grepigr
than those in the original set of impure pairs. The new den-
P11Po1 11 01 11 00 P . o . - -
sity matrix is still Bell diagonal, but is no longer a Werner
P11P10 11 10 01 11 F 3 i ; )
P2, 11 11 01 10 p stateWg . Therefore, a twirlT’ is applied(Sec. Il A, items

1 and 9, leaving thepg, component alone and equalizing the
others[34]. (It is appropriate in this situation to use the
Two states are drawn from an ensemble which is a mixturenodified twirl T which leavesb * invariant, as explained in
of Bell states with probabilitiep; wherei labels the Bell item 5 of Sec. lll A) We are left with a new situation similar
states in our two-bit notatiorfAs noted earlier, if the origi- to the starting situation, but with a higher fideli§/ = pj,

nal impure state is not Bell-diagonal, it can be made so byigure 7 shows the resulting’ versusF. The process is
twirling). The 00 state is again taken to be the standard staigen repeated:; iterating the function of Fig. 7 will continue to
and we takepgo=F. The two states are used as the sourc§mprove the fidelity. This can be continued until the fidelity
and tar_ggt for theBxoR operation. Their |n_|t|al states and g arbitrarily close to 1. Macchiavellf34] has found that
probabilities, and states after tB#OR operation, are ShOWN aqter convergence can be achieved by substituting a deter-
in Table Il. Alice and Bob test the target states, and ther?‘ninistic bilateralB, rotation for the twirlT’. With this modi-

separate the source states into the ones whose target states.. . . . .
passed and the ones whose target state failed. Each of thaﬁsce%tlon’ the density matrix remains Bell diagonal, but no

subsets is a Bell state mixture, with new probabilities. Thes o?rg];elr ha?t the Werner fortN.VF after the first |ter'3':|on;.trr:ev-
a posterioriprobabilities for the “passed” subset are Erneless oo component Increases more rapidly with suc-
cessive iterations.

pL{)OZ(pgo"_ p%o)/ppasss pélz(p(2)1+ p%l)/ppass EVG!’] Wi.th this improve.ment the .recgrrence_ r_nethoq IS
(42 rather mefﬂqentz app_roachmg zero yield in the limit of h|gh
P1o=2PooP10/Ppass  P11=2Po1P11/Ppass output fidelity, since in each iteration at least half the pairs
are lost(one out of every two is measured, and the failures
with are discarded Figure 7 shows the fraction of pairs lost on

each iteration. A positive yiel®,, even in the limit of per-
Ppass Poot Po1+ Pio+ Pii+ 2PooP1o+ 2PosP11-  (43)  fect output fidelity, can be obtained by switching over from

the recurrence method to the hashing method, to be de-
Consider the situation where Alice and Bob begin with ascribed in Sec. lll B 3, as soon as so doing will produce more
large supply of Werner staté8 . They apply the preceding good singlets than doing another step of recurrence. The
procedure and are left with a subset of states which passadeld versus initial fidelity of these combined recurrence-
and a subset which failed. For the members of the “passed’hashing protocols is shown in Fig. &ee also Fig. 9.
subset pye>poo for all pge>0.5. The members of the It is important to note that the recurrence-hashing method
“failed” subset havepyo= po1= P10=P11= 1/4. Since the en- gives a positive yield of purified singlets from all Werner
tanglement of this mixture is 0, it will clearly not be pos- states with fidelity greater than 1/2. Werner states of fidelity
sible to extract any entanglement from the “failed” subset,1/2 or less havee=0 and therefore can yield no singlets.
so all members of this subset are discarded. Note that this iBhe pure hashing and breeding protocols, described below,
where the protocol explicitly requires two-way communica-which are one-way protocols, work only down to
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M= ST+ 3w (e (44)

Note that because the fully entangled fractidbg. (19)]
f=1/2 for this state, it cannot be purified by the recurrence
method. However, a collection of pairs in this state can be
purified as using the following two-way protodd6]: as in
the recurrence method, Alice and Bob first performeker
operation between pairs of pairs, and then bilaterally mea-
sure each target pair in the up-down basis. One can show that
if the outcome of this measurement on a given target pair is
“down-down,” then the corresponding source pair is left in
the completely entangled stade™. Alice and Bob therefore
keep the source pair only when they get this outcome, and
FIG. 8. Measures of entanglement versus fiddfitjor Werner  discard it otherwise. The probability of getting the outcome
statesWr of Eq. (17). E is the entanglement of formation, Q7).  “down-down” is 1/8, and since each target pair had to be
Dr is the yield of the recurrence method of Sec. Ill B 1 continuedsacrificed for the measurement, the yield from this procedure

by the hashing method dfSec. lIB 4. Dy is the yield of the js D,=1/16. The same strategy works for any state of the
modified recurrence method of Macchiave[lg4], continued by  form

hashing.Dy, is the yield of the one-way hashing and breeding pro-
tocols(Sec. Il B 4 used aloneD g is the rate of the quantum error M=(1—p)|[TTWTT|+p| PP, (45)
correcting codes proposed by Calderbank and $h@rand Steane

ith Vi —p2
[11]. B, is the upper bound fob; as shown in Sec. VI Hollow- ~ With yield D,=p/4. _
ing Knill and Laflamme[40]). A recent paper by Horodeclet al. [37] presents a more

general approach to the purification of mixed states which,
like the above scheme, does not start by bringing the states to
Bell-diagonal form. Their strategy begins with a filtering op-
eration aimed at increasing the fully entangled fracfigiq.

(19)] of the surviving pairs; these pairs are then subjected to
2. Direct purification of non-Bell-diagonal mixtures the recurrence procedure described above. These authors

Most of the purification strategies discussed in this papef@ve shown that by this technique, one can distill some
assume that the state to be purified is first brought to th@mount of pure entanglement from any state of two qubits
Werner form, or at least to Bell-diagonal form, by means ofhaving a nonzero entanglement of formation. In_ other vyords,
a twirling operation. As we have said, though, this strategy i§h€y have obtained for such systems the very interesting re-
somewhat wasteful and we use it only to make the analysigult that if E(M) is nonzero, then so iB,(M).
manageable. In this subsection we give a simple example
showing how a state can be purified directly with no twirling.
For this particular example, it happens that the purification is  This protocol uses methods analogous to those of univer-
accomplished in a single step rather than in a series of stef@l hashing in classical privacy amplificatif@g]. (We will
that gradually raise the fidelity. give a self-contained treatment of this hashing scheme)here.

Consider again the statd of Eq. (33): Given a large numben of impure pairs drawn from a Bell-
diagonal ensemble of known density matvik this protocol
allows Alice and Bob to distil a smaller number
m~n[1—S(W)] of purified pairs(e.g., near-perfectb "

E state$ wheneverS(W) < 1. In the limit of largen, the output
0.1 1 pairs approach perfect purity, while the asymptotic yield
/ m/n approaches 4+ S(W). This hashing protocol supersedes
our earlier breeding protocdll7], which we will review
briefly in Sec. Il B 4.
Dy The hashing protocol works by having Alice and Bob
each performBxor’s and other local unitary operations
Des (Table ) on corresponding members of their pairs, after
which they locally measure some of the pairs to gain infor-
mation about the Bell states of the remaining unmeasured
0.00001 pairs. By the correct choice of local operations, each mea-
F=0.6 0.75 0.811 ’ surement can be made to reveal almost one bit about the
unmeasured pairs; therefore, by sacrificing slightly more

FIG. 9. The same as Fig. 8 exhibited on logarithmic scales. ThéhannS(W) pairs, where5(W) is the von Neumann entropy
value along thex axis is proportional to the logarithm of [See EQ.(2)] of the impure pairs, the Bell states of all the
(F—0.5). In this form it is clear thaE, Dy,, andDg follow power ~ rémaining unmeasured pairs can, with high probability, be
laws (F—0.5). The ripples inD,, andDg, are real, and arise from ascertained. Then local unilateral Pauli rotatioas ( ,) can
the variable number of recurrence steps performed before switchinge used to restore each unmeasured pair to the standard
over to the hashing protocgl7]. d+ state.

F~0.8107, and even the best known one-way prot¢86]
works only down toF~0.8094.

3. One-way hashing method

0.01

0.001

0.0001
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The hashing protocol requires only one-way communica- Sk
tion: after Alice finishes her part of the protocol, in the pro- 00 M= s x,
cess having measured-m of her qubits, she is able to send 11 o LD
Bob classical information which, when combined with his X, NN
measurement results, enables him to transform his corre- o1 Xie1=F, (%)
sponding unmeasured qubits into near-perfe¢t twins of 10 —{By}

Alice’s unmeasured qubits, as shown in Fig. 3.

Let 5 be a small pOSI'[!Ve par,amEter that will ,la_t,er be FIG. 10. Stegk of the one-way hashing protocol, used to deter-
allowed to approach Zero in the limit of Ia_rge The initial mine the paritys,-x,, for an arbitrary unknown set of four Bell
sequence ofi impure pairs can be conveniently representedsiates represented by an unknown 8-bit stiirmglative to a known
by a 2n-bit string x, formed by concatenating the two-bit sypset index strings=00,11,01,10 If bilateral measurement
representationgEq. (40)] of the Bell states of the individual yields aW¥ state(i.e., if the measurement result i$, then half the
pairs, the sequenc® ~®*®~, for example, being repre- candidates fox are excludede.g.,x=00,00,00,00), but half are
sented 110010. Thearity of a bit string is the modulo-2 sum still allowed (e.g.,x=00,11,00,00). For each allowed the after-
of its bits; the parity of a subsstof the bits in a stringk can  measurement Bell states of the three remaining unmeasured pairs
be expressed as a Boolean inner prodsck, i.e., the are a described by a 6-bit sequenge;=f4(x,) deterministically
modulo-2 sum of the bitwis@ND of stringss and x. For ~ computable fronx ands.
examplel101 0111=0 in accord with the fact that there are
an even number of ones in the subset consisting of the first, Consider the trajectories of two arbitrary but distinct
second, and fourth bits of the string 0111. Although the innestringsxo# Yo under this procedure. Laj andy, denote the
products- x is a symmetric function of its two arguments, we images ofx, andyy, respectively, aftek rounds, where the

use a slanted font for the first argument to emphasize its rolgame sequence of operatiohg,fs,....fs . param-
as a subset selection index, while the second argurfient eterized by the same random-subset index strings
roman fonj is the bit string representing an unknown se-sy,s;, ... ,S,_m-1, iS used for both trajectories. It can
qguence of Bell states to be purified. readily be verified that for angy<<n the probability

The hashing protocol takes advantage of the following
facts. P((X # Y1) & Vi Z5(Sk- Xk= Sk Vi) (46)

(1) The distributioanO of initial sequences,, being a

product ofn identical independent distributions, receives al-
most all its weight from a set ot 2"SW) “Jikely” strings. If

(i.e., the probability thak, andy, remain distinct while nev-
ertheless having agreed on allsubset parities along the
. ; ; - way, S+ X=Sk- Yk for k=0, ... r—1) is at most 2". This
the likely setﬁ IS (.jEmed as comprising .thép(?(W)M) ”?O.S.t follows from the fact that at each iteration the probability
probable strings Py, then the probability that the initial thatx andy remain distinct is< 1, while the probability that,
string x falls outsideL is O(exp(~&n)) [6]. if they were distinct at the beginning of the iteration they will

(2) As will be described in more detail later, the local give the same subset parity, is exactly 1/2. Recalling that the
Bell-preserving unitary operations of Tablebilateral /2 |ikely set £ of initial candidates has only™®SW)*¢ mem-
rotations, unilateral Pauli rotations, amXor's), followed  pers, put with probability greater than-10(exp(— 82n)) in-
by local measurement of one of the pairs, can be used tgudes the true initial sequence, it is evident that after
learn the parity of an arbitrary subsstof the bits in the  =n_m rounds, the probability of failure, i.e., of no candi-
unknown Bell-state sequence leaving the remaining un- gate, or of more than one candidate, remaining at the end for
measured pairs in definite Bell states characterized by a twg(-m' is at most 2(SW+3-(1-m | O (exp(—62n)). Here the
bits-shorter stringfs(x) determined by the initial sequence first term upper-bounds the probability of more than one can-
x and the chosen subset 5 didate surviving, while the second term upper-bounds the

(3) For any two distinct stringg+y, the probability that  pronanility of the truex, having fallen outside the likely set.
they agree on the parity of a random subset of their bit poy etiing n=~m=n[S(M)+245] and takings~n~“ we get
sitions, i.e., thas-x=s-y for randoms, is exactly 1/2. This  the desired result that the error probability approaches 0 and
is an elementary consequence of the distributive law)  the yield m approachesif1—S(M)] in the limit of large
®(s-y)=s:(xay). . n.

The hashing protocol consists of-m rounds of the fol- It remains to show how the local operations of Table | can
lowing procedure. At the beginning of thé&< 1)st round.  pe ysed to collect the parity of an arbitrary subset of bits of
k=0,1,...,n—m—1, Alice and Bob haven—k impure  y jnto the amplitude bit of a single pair. We choose as the
pairs whose unknown Bell state is described by agestination pair, into which we wish to collect the parity
2(n—Kk)-bit string x,. In particular, before the first round, s.x, that pair corresponding to the first nonzero bisofor
the Bell sequencg, is distributed according to the simpie  example ifs=00,11,01,10see Fig. 10 the destination will
priori probability distributionPy noted above. Then in the pe the second pair of,. Our goal will be to make the
(k+1)st round, Alice first chooses and tells Bob a randomamplitude bit of that pair after rouridequal to the parity of
2(n—Kk)-bit string s,,. Second, Alice and Bob perform local both bits of the second pair, the right bit of the third pair, and
unitary operations and measure one pair to determine thine left bit of the fourth pair in the unknown inpyt . Pairs
subset paritys, - x,, leaving behindn—k—1 unmeasured such as the first, having 00 in the index striaghave no
pairs in a Bell state described by th2g(n—k)—2]-bit string  effect on the desired subset parity, and accordingly are by-
xk+1=fsk(xk). passed by all the operations described below.
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The first step in collecting the parity is to operate sepa- s
rately on each of the pairs havingd)4, 10, or 11in the index 00
string, so as to collect the desired paifity that pair into the
amplitude (right) bit of the pair. This can be achieved by 11 x =x
_doing nothing _to pairs_ havinglin the index string, pen_‘orm- 01 »-
ing aB, on pairs havindLO (sinceB,, has the effect of inter- @7
changing the phase and amplitude bits of a Bell $tated 10 y
performing the two rotation8, and o, on pairs with11in target C) C) C) — s-x

the index string B,o,= 0,B, has the effect okoring a Bell
state’s phase bit into its amplitude it

The next step consists @xoring all the pairs except FIG. 11. Stepk of the one-way breeding protocol. The scheme
those with00in the index string into the selected destination, is very similar to the hashing protocol of Fig. 10, except that the
in this case the second pair. The selected destination pair 18rget for theexor's is guaranteed to be a perfebt” state. This
used as the common target for all thes®R’s, causing its allqws the one-b_it operations to be undone so that there is no back-
amplitude bit to accumulate the desired subset paity, ~ action on the string.
This follows from the fac{cf. Table ) that theBxoR leaves
the source’s amplitude bit unaffected while causing the tarthis case. Once again, the result of the parity measurement
get’'s amplitude bit to become theR of the previous am- M is to reduce the number of candidates foby almost
plitude bits of source and target. Recall that phase bits besxactly 1/2. Thus, by the same argument as before, after
have oppositely undeBxoRr: the target's phase bit is n—m=~n§W) rounds of parity measurements, it is probable
unaffected while the source’s phase bit becomesxtbreof  thatx has been narrowed down to be just one member of the
the previous values of source and target phase bits; thiikely set£. Thus, alln of these pairs can be turned into pure
“pback-action” must be accounted for in determining the ®* states; however, sinae—m pure® *’s have been used
function f.. Figure 10 illustrates this step of the hashingup in the process, the net yieldis'n=Dy(F), exactly the
method on an unknown four-Bell-state sequerassing the same as in the hashing protocol.
subset index string=00,11,01,10mentioned before.

The hashing protocol distills a yieldy=1—-S(W),
which we have called in our previous worK17]. For the
Werner channel, parametrized completelymy

IV. ONE-WAY D AND TWO-WAY D
ARE PROVABLY DIFFERENT

It has already been noted that some of the entanglement

S(Wg)=—Flogy(F)— (1-F)log,[(1-F)/3], (47  pyrification schemes use two-way communication between
the two parties Alice and Bob while others use only one-way
communication. The difference is significant because one-
way protocols can be used to protect quantum states during
storage in a noisy environment, as well as during transmis-
sion through a noisy channel, while two-way protocols can
only be used for the latter purposef. Sec. V). Thus it is

This protocol, introduced in Refl7], will not be de- important to know whether there are mixed states for which
scribed here in detall, as it has been superseded by the ong- is properly less thad,. Here we show that there are, and
way hashing protocol described in the preceding section. Thindeed that the original Werner stafés 5 (i.e., the result of
breeding protocol assumes that Alice and Bob have a sharesharing singlets through a 50% depolarizing chanoahnot
pool of pure|®*)=00 states, previously prepared by somebe purified at all by one-way protocols, even though it has a
other methode.g., the recurrence methoahd also a supply positive yield under two-way protocols.
of Bell-diagonal impure states which they wish to purify.  To show this, consider an ensemble where a state preparer
The protocol consumes the* states from the pool, but, if gives Alicen singlets, half shared with Bob and half shared
the impure states are not too impure, produces more newlyith another persor{Charlig. Alice is unaware of which
purified pairs than the number of pool states consufied pairs are shared with Bob and which with Charlie. Bob and
the manner of a breeder reagtor Charlie are also given enough extra garbage partiitiser

The basic step of breeding is very similar to that of hash+tandomly selected qubits or any state totally entangled with
ing and is shown in Fig. 11. Again a random sutsef the  the environment but with no one e)sso that they each have
amplitude and phase bits of the Bell states is selected. The total ofn particles as well. This situation is diagrammed in
parity of this selected set is again gathered up in exactly th&ig. 12. From Alice and Bob’s point of view, each state has
same way, except that the target of #eoR operations is the density matridiVyg.
one of the prepurified 00 states. The use of the pure target Alice, without hearing any information from Bob or Char-
simplifies the action of thexor, in that the “back action” lie, is supposed to do her half of a purification protocol and
which changes the state of the source bits is avoided in thithen send on classical data to the others. Therefore, each
scheme. This means that the input stingan be restored to particle Alice has looks like a totally mixed state to her. By
exactly its original value by a simple undoing of the one-symmetry, anything she could do to assure herself that a
qubit local operations, as shown. This offers the advantagparticular particle is half of a good EPR pair shared with Bob
that the (possibly very complicatedsequence of Boolean will also assure her that the same particle is half of a good
functionsfs ,f fs, ., donothave to be calculated in EPR pair shared with Charlie. No such three-sided EPR pair

giving a positive yield for Werner states with=0.8107.
Figures 8 and 9 sho®(F), comparing it withE and with
other purification protocols.

4. Breeding method

Spr ot
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o
° Charie FIG. 13. A general one-way QECC. A classical side channel
from Alice to Bob is allowed in addition to quantum channel

protocol. When used in conjunction with teleportation, puri-
FIG. 12. A symmetric situation in which Bob and Charlie are fication protocols, whether one-way or two-way, offer a

each equally entangled with Alice. Two-headed arrows denoteneans of transmitting quantum information faithfully via
maximally entangled pairs, and open circles denote garbage state®isy channels; and one-way protocols, by producing time-
[Eq. (18)]. separated entanglement, can additionally be used to protect

gquantum states during storage in a noisy environment. In this
can exist. If she used it to teleport a qubit to Bob she wouldsection we discuss the close relation between one-way en-
also have teleported it to Charlie, violating the no-cloningtanglement purification protocols and the other well-known
theorem[39]. Therefore, she cannot distill even one goodmeans of protecting quantum information from noise,
EPR pair from an arbitrarily large supply @z states. On  namely quantum error-correcting codg€3ECO [8—14.
the other hand the combined recurrence-hashing method A quantum channely, operating on states in an
(Dy in Fig. 9 gives a positive lower bound on the two-way N-dimensional Hilbert space, may be defined(efs [9]) a
yield D,(Ws/g)>0.004 57, so we can write unitary interaction of the input state with an environment, in

which the environment is supplied in a standard pure initial

D1(Wsjg) =0<0.004 5&D5(Wse)- (48) state|0) and is traced outi.e., discardepafter the interac-

btéon to yield the channel output, generally a mixed state. The
quantum capacitf(x) of such a channel is the maximum
asymptotic rate of reliable transmission of unknown quantum
stateg £) in H, through the channel that can be achieved by

D1(Wg)=0 for all F<5/8. Knill Lafl . g
th;(t DF)(WO)groafor aIEIS/IE:; < 3?11 ?st e?: a\r/r|1 rlgevféogfggm using a QECC to encode the states before transmission and
Lo ' ' decode them afterward.

their proof and, using the argument of Sec. V B, obtain the . . . .
n 9 9 As in quantum teleportatiofb] we will also consider the

o

It is also clear that any ensemble of Werner states can
reduced to one of lower fidelity by local actignombining
with totally mixed states of Eq.(18)]. Therefore

bound possibility that the quantum channel is supplemented with
D,<4F -3, (49)  classical communication. This leads us to define the aug-

mented quantum capaciti€¥;(x) andQ,(x), of a channel
as shown in Figs. 8 and 9. supplemented by unlimited one- and two-way classical com-

A similar argument can be used to show that for somenunication. For example, Fig. 13 shows a quantum error-
ensemble®; is not symmetric, depending on whether it is correcting code, consisting of encoding transformatiogn
Alice or Bob who starts the communication. Suppose in theand decoding transformatiddy, used to transmit unknown
symmetric situation of Fig. 12 that Bob and Charkeow quantum statel) reliably through the noisy quantum chan-
which pairs are shared with Alice and which are garbage. Fonel y, with the help of a one-way classical side channel
this ensemble the symmetry argument for Alice remains théoperating in the same direction as the quantum channel
same andD,_z=0. If the communication is from Bob to Perhaps surprisingly, this one-way classical channel provides
Alice, though, it is easy to see that he can use half of hisi1o enhancement of quantum capacity:
particles, the ones he knows are good pairs shared with Al-

ice. The other half are useless since they hEve0 and Q:=Q. (50)
could have been manufactured locally. Thus we have = )
Dg .a=1/2 andD, .g=0. This will be shown in Sec. V A.

Our no-cloning argument shows that Alice and Bob can- We consider also the case of a noisy quantum channel
not generate good EPR pairs by applying a 1-EPP to théupplemented by amselesquantum channel. We will show
mixed stateWs generated by sharing singlets through ain Sec. V B that the capacity af uses of a noisy channel
50% depolarizing channel. As a consequence, there is nePplemented byn uses of a noiseless channel of unit ca-
quantum error-correcting code which can transmit unknowrPacity is no greater than the sum of their individual capaci-

quantum states reliably through a 50% depolarizing channefi€s. i-€., their quantum capacities are no more than additive.
as will be shown in the next section. We have no similar result for the case of two different im-

perfect channels.
In contrast to Eq(50) we will show that for many quan-
tum channels two-way classical communication can be used
In preceding sections we have considered the preparaticio transmit quantum states through the channel at a rate
and purification of bipartite mixed states, and we have showi®,(x) considerably exceeding the one-way capa€iy).
that two-way entanglement purification protocols can purifyThis is typically done by using the channel to share EPR
some mixed states that cannot be purified by any one-wapairs between Alice and Bob, purifying the resulting bipartite

V. NOISY CHANNELS AND BIPARTITE MIXED STATES
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mixed states by a two-way entanglement purification protoany 1-EPP orM (), followed by quantum teleportation, re-
col, then using the resulting purified pairs to teleport un-sults in a QECC ory with a classical side channel.
known quantum statdg) from Alice to Bob. A trivial extension of these arguments also shows that the
The analysis 0fQ and Q, is considerably simplified by corresponding results for two-way classical communication
the fact that an important class of noisy channels, includingre true, namely,
depolarizing channels, can be mapped in a one-to-one fash- R
ion onto a corresponding class of bipartite mixed states, with Vi Da(M)=Qa(x(M)) (55
the consequence that the channel's quantum Capacitg
1=Q is given by the one-way distillable entanglement nd
D, of the mixed state, and vice versa. For example, a depo- 9
larizing channel of depolarization probabilify=1—x [cf. Vi BaMOx)=Q:zlx). (56)
above Eq(18)] corresponds to a Werner statg of fidelity T _
F=1—(3p/4) and haQ=D (W) andQ,= D ,(W). and it M(x(M))=M then
The correspondence between channels and mixed states is D,(M)=Qy(x). (57)
established by two functiondVi(x) defining the bipartite
mixed state obtained from channeland x(M) defining the A. A forward classical side channel does not increase
channel obtained from bipartite mixed stafe The bipartite quantum capacity
mixed stateM (x) is obtained by preparing a standard maxi-

mally entangled state of twhi-state subsystems, To demonstrate Eq50), we note that any one-way pro-

tocol for transmitting &) through channe} can be described
N as in Fig. 13. The sender Alice codgd and an ancillary
Y=N"¥2 le)®le;), (51)  state|0) using unitary transformatiod .. She then performs
i=1 an incomplete measurement on the coded system giving clas-
. , sical resultsr which she sends on to Bob, the receivéf.
and transmitting Bob’s part through the changelFor ex- | ¢oniaing any information about the quantum inf)t the
ample, a Werner staté/r, with F=1—3p/4, results when  g5ng no-cloning theorerfd] would prevent the original
half a standard EPR pair is transmitted through agiate from being recovered perfectly, even if the channel
p-depolarizing channel. o _ were noiseless. However, might contain information on
The mapping in the other direction, from mixed states o, the input| &) is coded: She also sends the remaining

ch_annels, is o:)tamed by teleportaur(])rr\]. C_-:-lven_la bipartit uantum state through as encoded stalg,). The channel
mixed stateM of two subsystems, each having Hilbert SPaCemaps|¢,) onto|,;) for a noise syndrome.

of dimensionN, the channef(M) is defined by using mixed " Consider the unitary transformation Bob uses for decod-
stateM, instead of the standard maximally entangled statqng in the case of some value of the classical dafar which
[Y)(Y], in a teleportatiori5] channel(see Fig. 4 It can be 1o decoding is successful and without loss of generality
readily shown that for Bell-diagonal mixed states the tWopame this case=0. (For a code which corrects with asymp-
mappings are mutually inverdd (x(M))=M; we shall call  totically perfect fidelity there may be some casesr dor

the channels corresponding to such mixed states “generajyhich the correction does not woyRiVe also consider error

ized depolarizing channels.” _ syndrome which is successfully corrected ly, . We have
For more general channels and mixed states, the two map-
pings are not generally mutually inverse. For example, Ug(r=0)(|70)®|0)) =] &) ®|a;). (58
x(M), for the bipartite staté=|17){T1], is thep=1 de- . . .
polarizing channel ani (*(M))=G of Eq. (18). (For our choice ofi the final|a;) state can without loss of
Nevertheless, two quite general inequalities will be dem-9enerality be.takelltlo He) in an appropriately sized Hilbert
onstrated in Secs. V C and V D: space). Applying Uy “(r =0) gives
Vy Dy(M)=Q(x(M)) (52) Ug'(r=0)(|&)®|0))=|70)®|0). (59
and There must exist another unitary operatidg which rotates
| 70i) into the noiseless coded vectdyp). Thus,
A4 D;(M < . 53 _
x DiMO)=QW) &3 UL Hr=0)(|&)e(0)=])el0). (60

If (as in the case of a Bell-diagonal state and its correspon
ing generalized depolarizing chanptie mapping is revers- ) . .
g9 <P g n bping some ancillary inputs and outputs always in a stand@yd

ible, so thatM =M(x) and x=x(M), the two inequalities 1, AN : .
are both satisfied, resulting in the equality mentioned earIierState' Thereforé) U, (r_—O) is a good encoder. Since this
viz. éncoder always results in the correct code vector correspond-

’ ing to classical data=0 this data need not be sent to Bob at
D.(M)=Q(x). (54)  all, as he will have anticipated it. ThuslU4*(r=0) and

U4 form a code needing no classical side channel.

Equation(52) follows from the ability, to be demonstrated in It may happen that for a large block code which only
Sec. V C, to transform a QECC op(M) into a 1-EPP on error-corrects to some high fidelity(g|&:)|>1— e where
M; Eq. (53) follows, as shown in Sec. V D, from the fact that |&;) is the final output of the decodethat no case is cor-

qh other wordsU U, }(r=0) takes| &) into |,) along with
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rected perfectly. Then the coded states produced by
USUd’l(rZO) will be imperfect. After transmission through
the noisy channel and correction hly the final output will
then be less perfect than in the original code. Nevertheless,
because of unitarity it is clear that as-0 the fidelity of this
code will also approach unity.

Thus any protocol using classical one-way data transmis-
sion to supplement a quantum channel can be converted into
a protocol in which the classical transmission is unnecessary
and with the same capacit=Q,. We have also now
shown that the encoding stage is unitary, in the sense that no
extra classical or quantum results accumulate in Alice’s labo-
ratory.

If the error syndromeé =0, corresponding to no error, is
decoded with high fidelity byJ 4 thenU4 can be taken to be
the identity. Thus, the encoding and decoding transforma-

tlon§ can in this case be written !n a form whefe=U, l’ a FIG. 14. A QECC can be transformed into a 1-EPP. Teleporting
faCt independently Sho_‘Nn by Knill and Le}f'am_ff‘@]-_ If t_he (M4,U,) via a mixed staté defines the noisy channg(M). If a

i=0 error syndrome is not decoded with high fidelity by qyantum error-correcting coddJ,,Ug} can correct the errors in

Ug [42] then the encoder cannot be the inverse of the detis channel, the code and channel can be used to share pure en-
coder. The proof is simpleUq(|£)®[0))=[¢) (where we  tanglement between Alice and B@b). This establishes inequality
have dropped the subscripts since it has been proven the(52), viz., VD (M)=Q(x(M)).

classical data is never neededand therefore

U, Y2 =(1&)®|0)). ThusU.* decodes the noiseless coded designated on the center right of the figure. Alice prepares
vectors|{) which is exactly what)y has been assumed not n qubits to be teleported through this channel by applying

to do. the encoding transformatiod, of a QECC tom halves of
EPR pairs which she generates in her laboratapper lefy
B. Additivity of perfect and imperfect quantum atl and ton—m ancillas in the standarfD) state. The re-
channel capacities sulting quantum-encoded qubits are teleported to Bob at

, . lower right through the noisy channel. There Bob applies the
Consider a channel of capaciy>0 supplemented by @ gecoding transformatiot. If the code can successfully

perfect channel of capacity 1. Suppose the imperfect channglyrect the errors introduced by the noisy teleportation, then
is usedn times and the perfect channel is usadimes. We e regylt is that Alice and Bob shametime-separated EPR
will call the maximum number of qubits transmitted through pairs(*). Indeed, the whole figure can be regarded as a one-
the _channfa_ls in this cage If the capacity of this joint chan- way purification protocol whereby Alice and Bob prepare
nel is additive theril =T,=Qn+m. , _ m good EPR pairs from of the initial mixed state#, using

~ Suppose the number of qubits transmitted is superaddly QECC of rateQ=m/n able to correct errors in the noisy
tive, i.e., T>T,. From the definition of noisy channel capac- quantum channek(M). Thus D,(M) must be at least as

ity we know that we can use an ir_nperfect ch_arm’s'uhwes to great as the rat®(y(M)) of the best QECC able to achieve
simulate a perfect channel being used times where  qjiaple quantum transmission througiM).

Qt=m. We now use the imperfect channel a tatalt times
and we can transmit qubits through this two-part use of the . -
imperfect channel. BUuT>T,=Qn+m so D. 1-EPP— QECC proving v,  D:(M(x)=Q(x)
In the same style as the preceding section, we establish
T>Qn+Qt. (61)  the second inequality by exhibiting an explicit protocol. The
object is to show that, given the existence of a 1-EPP acting
on the mixed stateM (y) obtained from quantum channel
X, Alice can successfully transmit arbitrary quantum states
T Qn+Qt |€) to Bob. The capacityQ of this quantum channel is the
= (62 same a®d, for the 1-EPP; this establishes that the capacity
of xy is at least as good as tHe, of the corresponding
1-EPP.
In fact, this protocol just involves the application of quan-
tum teleportatiorf5] mentioned in the Introduction. In Fig.
15 we show more explicitly the necessary construction,
_ R which has already been touched on in Figs. 3 and 4. Alice
C. QECC — 1-EPP proving Vy  D,(M)=Q(x(M)) and Bob are connected by changelAlice arranges to share
To demonstrate this inequalitgf. Fig. 14 we use bipar- the bipartite mixed stat® () with Bob by passing halves
tite mixed statesM in place of the standard maximally en- (the B particles of maximally entangled statesb(") from
tangled states® ™) to teleportn qubits from Alice to Bob. sourcel throughy to Bob. Then Alice and Bob partake in
This teleportation defines a certain noisy chanp@¥), so  the 1-EPP protocol. We have represented this procedure

The capacity of this channel IQ'=T/(n+t). Using Eq.
(61) we can write

>
n+t n+t

A capacity ofQ’>Q has been achieved using only the origi-
nal imperfect channel whose capacity wasThis cannot be
Sso.
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ing protocol of Sec. 11l B 3 can be reinterpreted as an explicit
error-correction code, and indeed it does the same kind of
job as the recent quantum error-correction schemes based on
linear-code theory of Calderbank and Sha6] and Steane
[11]: in the limit of large qubit block sizen, it protects an
arbitrary state in a2-dimensional Hilbert space from noise.
We note that the hashing protocol actually does somewhat
better than the linear-code schemBs(M(x)), and there-

fore Q(x) [see Eq.54)], is higher for hashing than for the
linear-code scheme, as shown in Figs. 8 and 9.

FIG. 15. A 1-EPP can be transformed into a QECC. Giyen We will make further contact with this other work on
Alice creates mixed statell(y) by passing halves of entangled ©rror-correction coding in finite blocks by showing how fi-
statesd* from sourcel through the channel. Alice and Bob per- Nité blocks of EPR pairs can be purified in the presence of
form a 1-EPP resulting in perfectly entangled stateswhich are ~ Noise which only affects a finite number of the Bell states.
then used to telepott) safely to Bob, completing a QECC. When transformed into an error-correcting code, this be-

comes a procedure for recovering from a finite number of
somewhat more generally than is necessary for the hashingubit errors, as in Shor’s procedure in which one qubit,
type procedures shown earlier, or for the finite-block proto-coded into nine qubits, is safe from any error on a single
cols to be derived below. We simply indicate that they mustqubit. We develop efficient numerical strategies based on the
preform two operationt) , andUg, and that Alice will per-  Bell-state approach which look for new coding schemes of
form some measurementst and pass the results to Bob. this type, and in fact we find a code which does the same job
The measurements which Bob would perform in the hashings Shor’s using only five EPR pairs.
protocol are understood to be incorporatedlig. Also, we
have accounted for the possibility that either Alice or Bob A, Another derivation of a QECC from a restricted 1-EPP
might employ an ancilla for some of their processing op-
erations.

By hypothesis, this protocol leaves Alice and Bob with
nD; maximally entangled statds). They then may use this

resource to teleporD; unknown quantum bits in the state ie. N, absent in Fig. § or effectivelyone-sided. An im-
|€). Thus, the net effect is that Alice and Bob, using channef' oA 9. h orel Y ; .

supplemented by one-wav classical communication. have %ortant case where the noise is effectively one-sided is when
X supp y y ' e mixed stateM obtained in Fig. 5 is Bell diagonal, i.e.,

means of reliably transmitting quantum data, with capacityhaS the form oW [Eq. (29)]. We can say that, subjected to
D1(M(x)). This is exactly a QECC oy with a one-way g nojse, the pure Bell state is taken to an ensemble of each

classical side channel. However: E&0) (proven_in Sez_:. of the four Bell states, with some probabilities. Using the
V A) states that the same capacity can be obtained W'thOLHotation of Sec. Il B 1 these af@yy, Poi, Pio, andpys:

the use of classical communication. Thus, the ultimate ca-
pacity Q of channely must be at least as great. This estab- |G *+)—{/p® "), Vp1d P ), VPod ¥ ), Vp1d ¥ )}
lishes the inequality.

:{Rmn|q)+>}- (63

Another way to derive the in-place QECC from the in-
place 1-EPP is to exploit the symmetry between measure-
ment and preparation in quantum mechanics. Here we will
restrict our attention to noise models which are one-sided

VI. SIMPLE QUANTUM ERROR-CORRECTING CODES .
(HereRy,, are proportional to the operatofs oy, 0y ,0,} of

For most of the remainder of this paper, we will exploit Table |) It is easy to show that the same mixed state could
the equivalence which we have established between 1-EP obtained if thé8 particles were subjected to a generalized
on M(x) and a QECC ory. We note that when the 1-EPP depolarizing channel, and, were absent. More generally,
has the property that the unitary transformatidig and  we require thalN, g be such that the resultingl could be
U, performed by Bob can be done “in placdfi.e., no an-  obtainable from some channgl M=M(y) for some y.
cilla qubits need to be introduced; see Fig.tBe 1-EPP can This is a fairly obvious restriction to make, since we are
be transformed into a particularly simple style of QECC,planning on defining a QECC on this effective gquantum
exactly like the schemes which have been introduced byhannely. Note also that, since the twirling of Sec. Il A
Shor[9] and have now been extended by many oth#fs-  (item 1) converts any bipartite mixed state into a Werner
16], which are also all done “in place.” As we have seen in state, for some purpos@sy noise can be made effectively
Figs. 14 and 15, some versions of 1-EPP and QECC magne-sided.
require ancillaa for their implementation. We will now show that under these conditions, the opera-

The proof of the correspondence between the in-placéions performed by Alice in Fig. 15 can be greatly simplified.
1-EPP and in-place QECC is immediate, following Sec. V D.Consider the joint state of th& andB particles after Alice
The 1-EPP is used to make a QECC as in Fig. 15. Théas applied the unitary transformatioh of Fig. 3 as part of
unitary transformationdJg and U, performed by Bob are the purification protocol, but before the one-sided nadige
combined as &4 andUg is performed in place by assump- has acted on th& particles. The joint state is still a pure,
tion. ThusU,=U.U ' (see Sec. V Acan also be done in maximally entangled state. For convenience, we assume that
place. the sourcd producesb ™ Bell states(If it produced another

As a simple consequence of this result, the one-way hasHype of Bell state, some additional simple rotations can be



3842 BENNETT, DiIVINCENZO, SMOLIN, AND WOOTTERS 54

inserted in the derivation we are about to gjv€he initial 1£) o [T ; 1E)
product ofn Bell states may be written |0>:1U1 —Np.___ U2 -
L QECC
P)i=—= X)alX)g - 64
| >| \/FXZO | >A| >B ( )

FIG. 16. The one-way purification protocol of Fig. 4 may be
transformed into the quantum-error-correcting-code protocol shown
here. In a QECC, an arbitrary quantum st along with some
qubits which are originally set tf®), are encoded in such a way by

After the application of the unitary transformatidh to Al-
ice’s particles, the new state of the system is

oN_q1 oN_q UI that, after being subjected to errdvg, decodingU, followed
1 by measurement, followed by final rotatiorlJ ;, permits an exact
|¢>f—\/?x20 yZO (Un)xyl¥)alx)s- (65 reconstruction of the original staté).

transformation.(Bob also does thé&J, operation of Fig. 3
appropriate for 00, namely, a no-op.
Finally we step back to see the effect that this series of

But notice that by a simple change of the dummy indices
this state can be rewritten

oN_q 201 transformations has produced, as summarized in Fig. 16. All
D), = 2 (UT . 66 use of blpar.tlt(_a statek, and thg corresponding particles,
[®)s \/Fxgo yZO X)aU)xylyle (66 has been eliminated, along with all the measurement results

transmitted to Bob. The net effect is that Alice has taken the

That is, the unitary transformation applied to theparticles ~ m-qubit unknown quantum stat¢£) along with n—m
is completely equivalent to the same operatitansposed  “blank” qubits, processed them with) [, and sent them on
applied to theB patrticles. channely to Bob. He is able to use his half of the protocol,

Alice’s tasks in the 1-EPP protocol are thus reduced towvithout any additional classical messages, to reconstruct
making one-particle measurementd on n—m of the A |€). This, of course, is precisely the in-place QECC that we
particles, making Bell measuremenits, between then qu-  want.
bits |£) to be protected and her remainingparticles(as in
quantum teleportatiofi5]), and applyingU] to the B par- B. Finite block-size purification and error correcting codes
ticles before sending them, along with her classical MEasure- \we have now shown that Bell-state purification proce-
ment results, to BolRecall from the Introduction that is 4,165 can be mapped directly into quantum error-correcting
the yield of good singlets from the purification protogol.  cqqes. This gives an alternative way to look for quantum

_However, then—m one-particle measurementd canbe  gror-correction procedures within the purification approach.
eliminated entirely. We use the property®f" states that if  This can be both analytically and computationally useful. In
one of the particles is measured to I8 or [1) in thez  fact, we can take over everything which we obtained via the
basis, then the other particle is “collapsed” into the samenashing protocol of Sec. 111 B 3, in which Alice and Bob
state[1,2]. So, rather than creating—m entangled states at perform a sequence of unilateral and bilateral unitary opera-
I, Alice simply preparesi—m qubits in a definite state and tjons to transform their bipartite state from one collection of
sends them directly into the)] operation. To mimic the Bell states to another, in order to gain information about the
randomness of the measuremewt, Alice might don—m  errors to which their particles have been subjected.
coin flips to decide what the prepared state of thBsgar- In this section we will show that this approach can also be
ticles will be, and send this classical data on to Bob. But thigjsed to do purification, and thus error correction, in small,
is unnecessary, since by hypothesis, the 1-EPP always yieldigite blocks of qubits, in the spirit of much of the other
perfect entangled pair®), no matter what the values of the recent work on QECE8—16]. In these procedures the object
M measurements were. So, Alice and Bob may as well preis slightly different than in the protocols which employ as-
agree on some particular definite set of valtesg., all 0'S,  ymptotically large block sizes: Here, we wish purify a finite
and Alice will always preset thosB particles to that state block of n EPR pairs, of which no more thanhave inter-
[43]. acted with the environmerii.e., been subjected to nojse

The only A particles remaining in the protocol at this The end result is to ben<n maximally entangled pairs, for
point are them particles forming the halves of perfect EPR which F=1 exactly. The explicit result we present below
pairs with Bob, and which are immediately used for telepor-will be for n=5, m=1, andt=1. This protocol thus has the
tation to Bob. But we note that, following the usual rules of sgme capability as the one recently reported by Laflamme
teleportation, the measuremeht, causes the corresponding et al. [12], although the quantum network which we derive
B particles, immediately after their creation at source be  below is simpler in some respects. We are still investigating
in the statd ) (if the measurement outcome were)00r a  the extent to which our two protocols are equivalent.
rotated versionoy , ,|£) (for the other measurement out-  The general approach will be the same as in Sec. Ill;
comeg. Again, the protocol should succeed no matter whahowever, our earlier emphasis was on error correction in
the value of this measurement; therefore, if Alice and Bobasymptotically large blocks of states. To deal with the finite-
preagree that this classical data should be taken to have thgock case, we will need a few small but important modifi-
value 00, then Alice can eliminate thf particles entirely, cations(see Fig. 17.
eliminate the preparatioh of entangled states, and simply (1) There will again be a sef of possible collections of
feed in the|¢) states directly a8 particles into theUI Bell states after the action of the noibly ; but rather than
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Alice and Bob subjeck to the unitary transformations
U,; andU,. They are confined to performing sequences of
the unilateral and bilateral operations introduced in Table I.
In particular, they can do eithdd) a bilateralxor, which
) flips the low (right) bit of the target iff the low bit of the
O=xey source is 1, and flips the higleft) bit of the source iff the
* high bit of the target is 1(2) a bilateral/2 rotationB, of
Ly both spins in a pair about theaxis, which interchanges the
w (i) rd) high and low bits;(3) a unilateral(by either Alice or Bob

7 rotation o, of one spin about the-axis, which comple-

FIG. 17. The 1-EPP of Fig. 3 marked with the notation used inments the low bit; of4) a composite operatiom,B, , where

this section. the o, operation is unilateral and thB, is bilateral; the
simple net effect of this sequence of operations is to flip the

being a “likely set” defined by the fidelity of the channel, |ow bit iff the high bit is one.

we will characterize the noise by a promise that the number |t is easy to show that with these four operations, Alice

of errors cannot exceed a certain numherCases with and Bob can do anything which they can do with the full set

t+1 errors are not just deemed to have low probability; theyof operations in Table I. In our classical representation, the

are declared to be disallowed, following SH®. effect of such a sequence of operations is to apply a classical

(2) The setZ will have a definite, finite size; if the size of Boolean functiorL,, to x®, yielding a stringw(:
the Bell state block is1 and the number of erroneous Bell
states to be corrected isthen the size of the set [43] wih =L (x1). (68)

' o n We use the symbol, for this function because, with the
S= pgo 3 p| (67) operations that Alice and Bob have at their dispokal,s
constrained to be a linear, reversible Boolean function. This
Borrowing the traditional language of error correction, each’s easy to show for the sequences of the four operations
member of the set, indexed by 1<i<S, defines arerror given above. Note, however, that not all linear reversible
syndromeThe “3” in Eq. (67) corresponds to the number of Boolean functions are obtainable with this repertoire. A lin-
possible incorrect Bell states occurring in the evolution oféar Boolean functiof44] can be written as a matrix equation
Eqg. (63): there is either a phase errob{ —® ), an ampli- . .
tude error @ *—W¥ ™), or both @ —W¥ ™) [11,13. It has w=Mx"+b. (69)
been noted10,13 that correcting these three types of error )
is sufficient to correct any arbitrary noise to which the quan-1€ré the matrixM and the vectoib are Boolean valued
tum state is subjected, which we prove in Appendix B. (e{0,1}), anq_addltlon is Qefmed modulo 2. Reversibility
(3) The object of the error correction is slightly different 2dds an additional constraint: detj=1 (modulo 2. In a
than in Sec. IlI; in the earlier case it was to find a protocolm(?)ment we will write down the condition which the set of
where the fidelity of the remaining EPR pairs approachedV' . must satisfy in order for purification to succeed.
unity asymptotically asi—c. In the finite-block case, the ~ The next step of purification is a measuremevt of
object is to find a protocol such that the fidelity attains ex-N—Mm of the Bell states. As discussed in item 5 of Sec. Il A,
actly 100%, that ism good EPR pairs are guaranteed to peafter Iearr_ung Alice’s measurement result, Bob can dedl_Jce
recoverable from the original set of Bell states for every the low bit of each of the measured Bell stgtes. If we write
single one of theS error syndromes. these measurement results for error syndronas another
Let us emphasize again that, in the purification languag&00lean worcy "’ (of lengthn—m), the measurement can be
which we have developed, the quantum error correctiorfXPressed as another linear Boolean function:
problem has been turned into an entirely classical exercise:
given a set oh Bell states, we use the operations of item 2
in Sec. lll A to create a classical Boolean function WhiChThe matrix elements ofl - are
maps these Bell states onto others such that, fob all the m
error syndromes, the firgh Bell states are always the same (M)= 6, (71)
when the measurement results on the remaimingn Bell Mkl Th2Am k) -
states are the same. _ The state of the remaining unmeasured Bell states is coded in
We will develop this mformal statement of the problem in 5 t,uncated worav’ of length 2m:
a more formal mathematical language. First, recall the code
which we introduced for the Bell states in item 5 of Sec. W D= (Wawy - - - Wo) 1. (72)
Il A in which, for example, the collection of Bell states
PO~ d" is coded as the six-bit word 001000. As in our  We now have all the machinery to state the condition for
hashing-protocol discussiofSec. Ill B3, we denote such a successful purification. The object is to perform a final
words byx(", where the superscriptdenotes the word ap- rotationU; on the state coded by’ and restore it, for every
propriate for theith error syndrome. These words have 2 error syndrome, to the state 00 -0. Whatevemw' is, such
bits, and we will sometimes denote &’ the kth bit of the  a restoringJ; is always available to Bob; for each Bell state,
word. he does the Pauli rotations:

vO=M w. (70)
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TABLE IIl. Possible initial Bell states and the resulting final state after the gate array of Fig. 18 has been

applied.
Initial state Final state Measurement
i x( w(® resulty ()
1 00 00 00 00 00 00 00 00 00 01 0 0 0 1
2 01 00 00 00 00 01 00 00 01 01 0 0 1 1
3 10 00 00 00 00 10 01 00 00 01 1 0 0 1
4 11 00 00 00 00 11 01 00 01 01 1 0 1 1
5 00 01 00 00 00 00 01 00 00 00 1 0 0 0
6 00 10 00 00 00 01 10 01 00 01 0 1 0 1
7 00 11 00 00 00 01 11 01 00 00 1 1 0 0
8 00 00 01 00 00 10 00 11 11 01 0 1 1 1
9 00 00 10 00 00 00 00 01 00 00 0 1 0 0
10 00 00 11 00 00 10 00 10 11 00 0 0 1 0
11 00 00 00 01 00 10 01 01 10 01 1 1 0 1
12 00 00 00 10 00 00 00 01 01 00 0 1 1 0
13 00 00 00 11 00 10 01 00 11 00 1 0 1 0
14 00 00 00 00 01 00 00 00 00 00 0 0 0 0
15 00 00 00 00 10 01 11 11 01 11 1 1 1 1
16 00 00 00 00 11 01 11 11 01 10 1 1 1 0
Bell state Ujtransformation of error syndromesS leads[13,17 to a restriction on the
. block size in which a certain number of errors can be cor-
00 I(do nothing )
rected:
01 gy,
t
10 Tx 73 s=> 3p(n)s2“—m. (76)
11 ay. p=0 p

But Bob must know which of these four rotations to apply tolt is this bound which is attained, asymptotically, by the
each of the remaining Bell states. The only information he hashing and breeding protocols above. However, [#4)
has on which of them to perform are the bits of the measureputs no obvious restriction on the block size in which error
ment vectoro ™. This information will be sufficient, if for ~correction can succeed, suggesting that the boundF).
every error syndrome which produces a distwéto is dis- ~ can actually be exceeded. For example, if the transformation
tinct; in this case, Bob will know exactly which final rotation L, were permitted to be any arbitrary Boolean function, then
U, to apply. it would be capable of setting/’=00---0 for every syn-
This, then, is our final condition for successful purifica- dromei, in which caseno error correction measurements
tion. In more mathematical language, we require an operawould be needed.

tion L, for which However,L,, is very strongly constrained in addition to
‘ ' _ . being a linear, reversible Boolean function, and we are left
Vip w®zrw D=y, (74)  uncertain to what degree the bound EZp) may be violated.

For the small cases which we have explored below, in which

We will shortly show the results of a search fo; which  one Bell state is restored from single-qubit errom=(1,
satisfy Eq.(74). t=1), we find that the bound of E(76) is notexceeded. All

But first, we touch a point which has been raised in thesolutions which we find which satisfy E¢74) also happen
recent literaturd 10—-13: Bob will obviously know which  to identify every error syndrome uniquefgq. (75)]. The
rotation U5 to apply if from the measurement he learns thepresent work, therefore, does not demonstrate that(F).
precise error syndrome, that is if for each error syndrome thectually leads to more power error-correction schemes than
measurement outcome is distinct. This “condition for learn-Eq. (75). However, Shor and Smolii85] have recently ex-
ing all the errors” may be stated mathematically in a wayhibited a family of new protocols which, at least asymptoti-
parallel to Eq.(74): cally for largen, exceed the bound E76) by a small but

finite amount.

Vi i#j=o0#00), (75)

This condition is obviouslysufficientfor successful error C. Monte Carlo results for finite-block purification protocols
correction; however, it is more restrictive than E@4), and For the single-errort=1), single-purified-statenj=1)

it is not anecessancondition. If Eq.(75) werea necessary case, we have performed a Monte Carlo computer search for
condition for error correction, then a comparison of the num-unitary transformationt); andU,. The program first tabu-
ber of possible distinct measurementd with the number lates thex(" for all the allowed error syndromésas shown
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= 1000 01010
o a T - 011000001
Py dn Py Py =
é D\J & é 0 01 00 O O0OOT1TTO0
o8 = 1001 000110
0 00001 0O010O0
- ! M= (77)
—— Source —&— Bilateral Ry Rotation 0010111110
Bilateral XOR 0O 0 0O0OO1 01 O0O0
—D— Target é Unilateral Oz Rotation 0O 00O O 1 1 0 1 0
0100 0O0O0O001
FIG. 18. The quantum gate array, determined by our computer 0 0011 0100

search, which protects one qubit from single-bit errors in a block of

five. “Bilateral” and “unilateral” refer to whether both Alice and and

Bob, or only Alice (or Bob), perform the indicated steps in the

2-EPP; in the QECC version, it corresponds to whether the opera- b=(000000000O0 1L (78
tion is done in both coding and decoding, or in just the codirg

decoding operations. All but the first qubit are measured atthe end. b Ajternative conditions for successful quantum error

correction code

in Table 1. (For the case of=1 there areS=3n+1 error While all of our work has involved deriving QECC's us-
syndromes, since either of theBell states could suffer three jng the 1-EPP construction, it is possible, and instructive, to
types of error, plus one for the no-error caskhe program  formulate the conditions for a good error correcting code
then randomly selects one of the four basic operations enutirectly in the QECC language. As Shor first show8# in
merated above, and randomly selects a Bell state or pair ahis language the requirements become a set of constraints
Bell states to which to apply the operation. The program thenvhich the subspace into which the quantum bits are encoded
checks whether the resulting set of staig® satisfies the must satisfy. In the course of our work we derived a set of
error-correction condition of Eq(74). If the answer is no, general conditions for the case of error-correcting a single bit
then the program repeats the procedure, adding another rag=1). They are quite similar to conditions which other
dom operation. If the answer is yes, the program saves th&orkers have formulated recently13,45. Knill and

list of operations, and starts over, seeking a shorter solution-aflamme have recently obtained the same condjtéfj.

Two “shortness” criteria were explored: fewest total opera- We will assume that only one qubit is to be protected, but
tions, and fewest totaBXoR's (since two-bit operations the general!zgtlon to multlpli qubl_ts is straightforward. Sup-
could be the more difficult ones to implement in a physicalPose & qubit is encodetly U, in Fig. 16 as a state
apparatug32])).

A simple argument akin to the one of Sec. IV shows that |&)=alvo)+Blva), (79
error correction in a block of 2tE1, m=1,n=2) iSiM-  \here o and g are arbitrary except for the normalization
possible. We performed an extensive searchrfer3 and  ondition
n=4 codes; it would not be possible to detect the complete
error syndrome for these casi&q. (76)], but it would ap- la|?+|8]%=1, (80)
peara priori possible to satisfy Eq(74). Nevertheless, no
solutions were found, strongly suggesting that, for this caseand |vg) and |v;) are two basis vectors in the high-
n=5 is the best block code possiblg2]. Knill and dimensional Hilbert space of the quantum memory block.
Laflamme have recently proved tHi40]. Can|vo) and|v,) be chosen such that, after the quantum

Our search found many solutions fae=5 with similar state is Subjected to Werner-type errors, the original quantum
numbers of quantum gate operations. The minimal networls!late can -Sti” be perfectly reconstituted as the state of a
which was eventually found was one with 11 operations, sixingle qubit,
of which wereBxoR’s. Here we present a complete analysis
of a slightly different solution, which involves 12 operations, |¢1)=al0)+B[1)? (81)
seven of which arexoR’s. The gate array for this solution is
shown in Fig. 18. The complete action bf, and U, pro- satisfy in order for this to be true.

duced by this quantum network is given in Table IIl. _ We specify the action of the noise as a mapping of the
Note that, as indicated above, this code not only satisfie§yiginal quantum state into an ensemble of unnormalized

Fh]f acthual error-correc(';[qn criterion :IECEAJ, but it alzo sal-  giate vectors given by applying the linear opera®ro the
isfies the stronger condition EZ5); all the error syndromes ¢ivinal state vector:

are distinguished by the measurement resufits
It is interesting to note, as a check, that the tabulated |€)—{Ri| &)} (82

transformation is indeed a reversible, linear Boolean opera-

tion. The reader may readily confirm that the results of Tablg=or each error syndromiethere is anlunnormalizedl opera-

[l are obtained from the linear transformation £69), with  tor R; specifying the effect of the noise, as in E§3). For

We shall derive the conditions whiclyo) and |v,) must
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single-bit errors, th&;’s are just proportional to &, ,0,, or  information about the initial quantum state by doing this an-
o, operator applied to one of the quantum-memory qubits, asilla measurement. This will be true so long@gsn Eq. (84)
discussed below. Two-bit errors would involve operators likeis not a function of the state vector coefficienmtsand 8. It
Ri:Uff,y,sz,y,z applied to two different qubita andg, and  may be noted that the right hand side of E&4) has the
so forth. Equivalently to Eq(82), the effect of the noise form of the expectation value of ax22 Hermitian operator
Ng in Fig. 16 can be expressed as a ensemble of normalized the state &,8)". It is a well-known theorem of linear
state vectors$&;) with their associated probabilitigs : algebra that such an operator can only have an expectation

RIS value independent of the state vectar, )" iff the Hermit-

i ian operator is proportional to the identity operator. This

[&)—1p ’|§‘>}:[<§| RIR), (éIRTR[E) J (83 givespus the firstptwg conditions that the stg/te \F/)ector may be
' recovered exactlyy, ,
The Werner noise can be set up so that ptis are the

probabilities that the environment “measures” thé out- (volRTRilvo)=(v1|RIRiv1)=p;,
come of a pointer or ancilla space. We can evaluate the prob- :
ability p; (for theith outcome of these measuremerits the (v1|R/Ri[vg)=0. (85

state Eq(79) using the expression in E¢BJ): . L -
If this condition is satisfied, then the ensemble of state

(vo|RTRi|vo)  (volRIRi|v1) a vectors in Eq(82) can be written in the simplified form:
pi=(a*,B*)X :
| (viRRvo) (v1|RIRilvy)/ | B aR|vg)+ BRi|vy)
(84) CY|U()>+B|U]_>*> pi, \/p— . (86)
We have used the linearity of the operat®&s The matrix '
notation used in Eq84) will prove useful in a moment. Now, given that the environment learns nothing from the

The first, necessary condition which must be satisfied irmeasurement, a further, sufficient condition is that there exist
order that the state may be reconstituted as in(&%.is that  a unitary transformationl,) which takes each of the state
the environment producing the Werner noise can acquire neectors of Eq.(86) to a vector of the form:

1
Ww«lmﬂﬂRiIul>)e(a|o>+g|1>)|ai>. @7
ol Rifto

Here|a;) is a normalized state vector of all the qubits excluding the one which will contain the final sta¢@lEdBecause
of unitarity, the angle between any two state vectors must be preserved. Taking the dot product of the state vectors resulting
from two different syndromes andj, and equating the result before and after the unitary operation gives

1 X (a* )X (volRTRilvo)  (volRIRj|v1)
a 1
V(volRRivo) V(volRIRj v o) (v1|RTRjlvoy  (v1|RTR{[v1)

o
) X(,B) =|al¥a|ay) +|B|%(aila)=(aila;).
(88)
In the last part we have used the normalization condition to elimimaad 8. Now, since the right-hand side of E@8), and
the prefactor of the left hand side, are independen& aind 8, so must be the expectation value of th& 2 Hermitian

operator. We again conclude that this Hermitian operator must be proportional to the identity operator, and this gives the final
necessary and sufficient conditiof#6] for successful storage of the quantum data;,

(volRIR;|ve)=(v1|RIR|v1), (89)

(v4|RIRj|vo)=0. (90

For the specific five-qubit code described above, we fabydanother, simple computer calculatjdhat the two basis vectors
of EqQ. (79) are

lu)ec(—]0000Q —|11000 —|01100 — 00110 — 00013 — | 10003 + 10010 +| 10100 +|01003 + 01010 + |00103)
+]11110 +]11109 +|11019+]10113 +]01111D), (91)

i.e., a superposition of all even-parity kets, with particular signs, and

|v,)=(the corresponding vector with 0 and 1 interchanged (92
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It is easy to confirm that this pair of vectors satisfies thefraction (F—F)/(1—F,) of the time and a channel with
conditions Eqs(89) and (90). It is interesting to note that fidelity Fy used (-F)/(1—F,) of the time because the first
these two vectors doot span the same two-dimensional sub- channel is the same as the composite channel provided one is
space as the ones recently reported by Laflaretrad. [12]; unaware of whether the fidelity is 1 &1, on any particular

but it has recently been shown that they are related to onase of the channe(This construction is akin to that of Sec.

another by one bit rotatior{l7]. IV.) By the channel additivity argument of Sec. V B the
capacity of the composite channel, which bounds the capac-

E. Implications of error-correction conditions ity of the fidelity F channel, cannot exceed

on channel capacity (F—Fg)/(1—Fy). SinceF, cannot be below 0.75 we obtain

Knill and Laflamme[40] have used the error correction the straight-line bound

conditions[Egs. (89) and (90)] to provide a stronger upper Q=D,<4F-3, (99)
bound forQ andD, than the one of Sec. IV by showing that

D,;=0 whenF=0.75. We indicate this on Figs. 8 and 9, as shown in Figs. 8 and 9.

using our channel-additivity result of Sec. V B to extend this

to the linear bound shown. Their proof is as follows: write VII. DISCUSSION AND CONCLUSIONS

the coded qubit basis statpsf. Eqs.(91) and(92)] as ) o
There has been an immense amount of recent activity and

i i progress in the theory of quantum error-correcting codes,
|Ui>=§ “x|x>=2Z ay.,|y:2). (93 including block codes with some error-correction capacities
v in blocks of two[16], three[13,14], and four[16]. Codes
Herex stands for am bit binary number, ang:z stands for ~ which completely correct single-bit errors have now been
a partitioning of x into a 2-bit substringy and an reported for block sizes of five as in the present wdR],
(n—2t)-bit substringz. (The partitioning may be arbitrary, Seven11], eight[15], and nine[9]; this is in addition to the
and need not be into the least significant and most significarfork using linear-code theory of families of codes which

bits) Knill and Laflamme then consider the reduced densityWork up to arbitrarily large block siz44.0,11. A variety of
matrices on thegy and thez spaces: subsidiary criteria have been introduced, such as correcting
only phase errors, maintaining constant energy in the coded
i i i state, and correction by a generalized watchdogging process.
pn72t:yzzz “y:zlay:zz|zl><22|' (94 Much of this work can be expressed in entanglement purifi-
B cation language, in some cases more simply.
_ _ _ Our results highlight the different uses to which a quan-
ph= > ay oy | Y1)(Yal. (95  tum channel may be put. When a noisy quantum channel is
Y1.Y2.2 used for classical communication, the goal—by optimal
Knill and Laflamme then prove two operator equations. First:ChO'Ce of preparations at the sendmg_ end, measurements at
the receiving end, and classical error-correction
0 1 _ technigues—is to maximize the throughput of reliable clas-
Pn-2tPn—2t=0. (96) . . . ) .
sical information. When used for this purpose, a simple de-
This is proved by using the condition for a successful errorfolarizing channel from Alice to Bob has a positive classical
correction coddEq. (90)], where the linear operatd®, op-  capacityC>0 provided it is less than 100% depolarizing.
erates on a set dfbits, andR; operates on a different set of Adding a parallel classical side channel to the depolarizing
t bits. (TheseR’s should be taken as projection operators inquantum channel would increase the classical capacity of the
this proof) Likewise, by applying Eq(89) with the same combination by exactly the capacity of the classical side

operatorsR; andR;, they prove channel. . _ _
When the same depolarizing channel is used in connec-
p3=p3; - (97)  tion with a QECC or EPP to transmit unknown quantum

states or share entanglement, its quantum cap@is/posi-

These two equations give a contradiction when the two subtive only if the depolarization probability is sufficiently small
strings are of the same size, because it says that reduc¢et1/3), and this capacity is not increased at all by adjoining
matrices are simultaneously orthogonal and identical. Thia parallel classical side channel. On the other hand, an addi-
says that no code can exist it2n— 2t, which corresponds tional classical back channel, from Bob to Alice, does en-
to F=1-t/n=0.75. As a bonus, these results give an inter-hance the quantum capacity, making it positive for all depo-
esting insight into the behavior of coded states: no measurdarization probabilities less than 2/3.
ment on 2 qubits can reveal anything about whatlaed or a It is instructive to compare our results to the simpler
1 is encoded, while there exists a measuremenn er2t theory of noiseless quantum channels and pure maximally
qubits which will distinguish with certainty a coded O from a entangled states. There the transmission of an intact two-
coded 1. state quantum system or quigsay, from Alice to Bobis a

This result shows that the lowest fidelity Werner channelvery strong primitive, which can be used to accomplish other
with finite capacity must havé&>0.75. Call that fidelity = weaker actions, in particular the undirected sharing of an ebit
Fo. Consider a channel with fidelitif betweenFy and 1. of entanglement between Alice and Bob, or the directed
The capacity of this channel is no greater than that of dransmission of a bit of classical information from Alice to
composite channel consisting of a perfect channel used Bob. (These two weaker uses to which a qubit can be put are
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mutually exclusive, in the sense tHatjubits cannot be used full implications of the quantum theory. Its capacity to store,
simultaneously to sharg ebits between Alice and Bobnd  transmit, and manipulate information is clearly different
to transmitm classical bits from Alice to Bob i#”+m>k  from anything which was envisioned in the classical world.
[48)). It still remains to be seen whether the present surge of inter-
A noisy quantum channet, if it is not too noisy, can €stin quantum error correction will enable the great potential

similarly be used, in conjunction with QECC'’s, for the reli- POWer of quantum computation to be realized, but it is

able transmission of unknown quantum states, the reliablgléarly & step in this direction.

sharing of entanglement, or the reliable transmission of clas-

sical information. Its capacity for the first two tasks, which ACKNOWLEDGMENTS

we call the quantum capaci(y), is a lower bound on its
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Most error-correction protocols are designed to deal withthis work. We thank G. Brassard, R. Cleve, A. Ekert, R.
error processes that act independently on each qubit, or affeépzsa, M. Knill, R. Laflamme, R. Landauer, C. Macchia-
only a bounded number of qubits within a block. A quite Vello, S. Popescu, and B. Schumacher for helpful discus-
different error model arises in quantum cryptography, wherelons.
the goal is to transmit qubits, or share pure ebits, in such a
way as to shield them from entanglement with a malicious  AppENDIX A IMPLEMENTATION OF RANDOM
adv_ersary. Tradmona_llly one grants th_ls adversary the ability BILATERAL ROTATION
to listen to all classical communications between the pro-
tagonists Alice and Bob, and to interact with the quantum In this appendix we show how an arbitrary density matrix
data in a highly correlated way designed to defeat their erroref two particles can be brought into the Werner form by
correction or entanglement-purification protocol. It is not yetmaking a random selection, with uniform probabilities, from
known whether protocols can be developed to deal succesa-set of 12 operationgdJ;} which involve identical rotations
fully with such an adversarial environment. on each of the two particle§Thus, the rotationdJ; are

Even for the simple error models which introduce no en-members of a particular SB) subset of S(#4).] After such a
tanglement between the message qubits, there are still a widet of rotations the density matrix is transformed into an
range of open questions. As Fig. 8 has shown, we still do noarithmetic average of the rotated matrices:
know what the attainable yield is for a given channel fidelity;
but we are hopeful that the upper and lower bounds we have 1 N
presented can be moved towards one another, for both one- M;=—> UMU;. (A1)
way and two-way protocols. i=1

Improving the lower bounds is relatively straightforward,
as it simply involves construction of protocols with higher N will be 12 in the example we are about to give. The
yields. An important step towards this has been the realiza4 x 4 density matrixM, expressed in the Bell basis, has three
tion that it is not necessary to identify the entire error syn-parts which behave in different ways under rotatit): the
drome to successfully purify. This has permitted the lowerdiagonal singlet¥ ~) matrix element, which transforms as a
bound for one-way protocolgnd thus for QECC)sto be  scalar;(2) three singlet-triplet matrix elements, which trans-
raised slightly above thBy curve of Fig. 8(see Ref[35]). form as a vector under rotation; a8 the 3x3 triplet

Improvement of the upper bounds is more problematicalblock, which transforms as a second-rank symmetric tensor.
For two-way protocols, we presently have no insight intoln the desired Werner form the vector part of the density
how this bound can be lowered belo. Characterizing matrix is zero, and the symmetric second-rank tensor part is
D;, D,, andE for all mixed states would be a great achieve-proportional to the identity.
ment [49], but even that would not necessarily provide a The mathematics of this problem is the same as that
complete theory of mixed state entanglement. Such a theomyhich describes the tensor properties of a large collection of
ought to describe, for any two bipartite staMsandM’, the  molecules as would occur in a liquid, glass, or solid. In the
asymptotic yield with which stat®’ can be prepared from case of a liquid, all possible orientations of the molecules
stateM by local operations, with or without classical com- occur. Because of the orientational averagjngathemati-
munication. In general, the most efficient preparation wouldcally equivalent to Eq(Al), where the sum runs over all
probably not proceed by distilling pure entanglement out ofSU(2) operation$ vector quantities become zefe.g., the
M’, then using it to prepar®l; it is even conceivable that net electric dipole moment of the liquid is zerowhile
there might be incomparable pairs of stafdsandM’ such  second-rank tensor quantities become proportional to the
that neither could be prepared from the other with positivedentity (e.g., the liquid’s dielectric response is isotrgpic
yield. [50].

Surprisingly, basic questions about even the classical ca- But following the molecular-physics analogy further, we
pacity of quantum channels remain open. For example, it iknow that crystals, in which the molecular units only assume
not known whether the classical capacity of two parallela discrete set of orientations, can also be optically isotropic
guantum channels can be increased by entangling their irend nonpolar. It is also well known that only cubic crystals
puts. have sufficiently high symmetry to be isotropic. This sug-

For us, all of this suggests that, even 70 years after itgests that if the sum in E¢A1) is over the discrete subgroup
establishment, we still are only beginning to understand thef SU(2) corresponding to the symmetry operations of a tet-
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TABLE IV. Modification of part of Table I, including the phase changes of the Bell states.

Source
v (O} ot v
| v (O3 o+ v
Bilateral 7/2 rotations: By v o vt id*
B, \ —w o* @
B, - i id- p

rahedron(the simplest object with cubic symmelrgyhen the stateM be taken to some Bell-diagonal staté [Eq. (29)],
desired Werner state will result; and this turns out to be thehen a smaller subset, corresponding to the orthorhombic
case. crystal groupD, (an abelian four-element groupnay be
The bilateral rotation8, , , introduced in Sec. Il B 3 are used:
the appropriate starting point for building up the desired set
of operations. In fact they correspond to fourfold rotations of '
a cube about the, y, andz axes. This is not evident from B,B,
their action on Bell states as shown in Table | where they {Ui}= BB M—-W
appear to correspond to twofold operations. This is because Y=y
this table does not show the effect of tBerotations on the
phase of the Bell states. Phases are not required in the puri- ) ) ) ) )
fication protocols described in the text, because the densityinally there is another special case, which arises in some of
matrix in all these cases is already assumed to be diagondlur purification protocols, in which the density matki is
so that the phases do not appear. But for the present analy@§eady diagonal in the Bell basis, but is not isotrogiie.,
they do, so we repeat the table with phases in Table IV. the triplet matrlx elementg are dn‘ferent-from one anather
When presented in this way, it is evident that these operal© carryW into We, the discrete group in EqA1) can be
tions are fourfold(that s, Bi4:|)’ and indeed, they are the @gain be reduced, in this case to the three-element group with
generators of the 24-element group of rotations of a cubdN® elements
known as the grouf in crystallography[50]. (It is also |
isomorphic toS,, the permutation group of four objedts.
Now, as mentioned above, only the rotations which leave
a tetrahedron invariant are necessary to make the density
matrix isotropic. This is a 12-element subgroup®known
asT (which is isomorphic toA,, the group of all even per-
mutations of four objecis Written in terms of theB;’s, these
12 operations are

(A3)

B,B,.

{Ui}= B:BxB\By
B,B,B,B,.

W W (Ad)

One further feature of any s¢t);} that takes the density
matrix to the isotropic formnWg, which can be used to sim-
plify the set, is that the modified s€RU;}, for any bilateral
rotationR, also results in a Werner density matih% in Eq.

| (identity) (Al). Since the density matrix is already isotropic, any addi-

BB tional rotationR leaves it isotropic(A cubic crystal has the

X=X same dielectric properties no matter how it is rotatéehr

B,By example, if we tak&R=B,, the three operations of EGA4)

B,B, take the form

B.By B,

5,8 {U}=By, W-W (A5)

{Uit= M —We (A2) '

B,B, B..

ByBx
BxByBxBy APPENDIX B: GENERAL-NOISE ERROR CORRECTION
B,B,B,B, In this appendix we present an argument, based on twirl-
B.B.B.B ing, that correcting amplitude and phase errors corrects every

ZmxmzEX possible error. We have derived finite-block purifications un-
ByBxByBx. der the assumption that the pairs which are affected by the

environment are subject to errors of the Werner type, in
It is easily confirmed by direct calculation, using Table IV, which the Bell state evolves into a classical mixture of Bell
that this set of 12ZU;}, when applied to a general density statedsee Eq(63)]. But the most general effect which noise
matrix M in Eq. (Al), results in a Werner density matrix can have on a Bell state appears very different from the
W of Eq. (17). Werner noise model, and is characterized by thed44den-
There are a couple of special cases in which the set oity matrix M into which a standard Bell sta® ™ evolves
rotations can be made simpler. If it is only required that the(see Fig. . Many additional parameters besides the fidelity
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record of which of these I2actions he has taken; he does
not, however, reveal this record to Alice or Bob. Without this
record, but with a knowledge that Tom has performed this
action, Alice and Bob conclude that the density matrix of the
degraded pairs has the Werner form. They proceed to use the
protocol they have developed to puriip EPR pairs per-
fectly. Now, suppose that after this has been done, Tom re-
%{gals to Alice and Bob Fhe t\_/virl re_cord which he has here-
occur on each qubif13]; this corresponds to the Werner mixed qure kept secret. At this point, Alice and BOb novy havg a
stateWe in the purification picture. As described in the text, for revised knowledge of the state of the particle pairs which

finite-block error correction the QECC protocol will succeed even if€Ntered their purification protocol; in fact, they now know
the twirl T is not performed. that the density matrix is just some particular rotated version

of the non-Werner density matrix in which the environment

F=(®d*|M|®") are required for the specification of this leaves the EPR pairs. Nevertheless, this does not change the
general error model. A generak44 density matrix of course fact that the purification protocol has succeeded. Indeed, we
requires 15 real parameters for its specification. Howevernust conclude that it succeeds for each of thé g@ssible
not all of these parameters define distinct errors, since anyalues of Tom’s record, and in particular it succeeds even in
change of basis by Alice or Bob cannot essentially changéhe case that each of Tomis rotations was the identity
the situation(in particular, the ability to purify EPR pairs operation. Thus, the purification protocol works on the origi-
cannot be changedThis says that six parameters, those in-nal non-Werner errors, even if Tom and his twirling is com-
volved in two different SI2) changes of basis, are irrel- pletely removed. This completes the desired proof, and we
evant. But this still leaves nine parameters which are rewill thus develop protocols for correcting Werner type er-
quired to fully specify the most general independent-errorrors, Eq.(63), keeping in mind their applicability to the more
model [51]. How then does correction of just amplitude, general case.
phase, and both, deal with all of these possible noise condi- A slight extension of the above arguments shows that as-
tions, characterized by nine continuous parameters? ymptotic large-block purification schemes such as our hash-

To show this we will again introduce the “twirl” of Fig. ing protocol of Sec. lll B 3 are also capable of correcting for
5, although in the end it will be removed again. Recall thatnon-Werner error. Consider a non-Bell-diagonal product
any density matrix is transformed into one of the Wernerdensity matrix ofn particles,M =(M)", whose fidelity is
type by the random twirl(See item 5 of Sec. Il A for the such that, after twirling, it can be successfully purified, re-
method of twirling thed * state) Thus, if twirling is inserted  sulting in entangled states whose final fidelity with respect to
as shown in Fig. 19, or in the corresponding places in Fig. 3perfect singlets approaches 1 in the limit-cc. The hashing
then the channel is converted to the Werner type, and thprotocol produces truly perfect singlets of unit fidelity for a
error correction criteria we describe in Sec. VI will work. likely set £ of error syndromes containing nearly all the

But let us consider the action of the twirl in more detail. probability. This means that we can writh=(1—¢)
Let us personify the twirl actionl in Fig. 19 (or in the M’+edM, whereM’ can be purified with exactly 100%
corresponding purification protocol of Fig. 3, as in Fighy  final fidelity. By the above argument®}’ can be success-
saying that an ager{tTom” ) performs the twirl for then fully purified even if twirling is not performed. Since—0
bits by randomly choosing times from among one of 12 asn—x, the original statéVl will also be purified to fidelity
bilateral rotations tabulated in Appendix A. Tom makes aapproaching 1, even without twirling.

z
0y Ui®

19}

FIG. 19. If the state is subject to the initial and final rotations
R™ andR (the “twirl” T) in the QECC of Fig. 16, then the action
of the noiseNj is guaranteed to be of a simple form in which only
three types of errors, amplitude, phase, or amplitude-and-phase, c
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by making the matrix elements (®F|M|P ),
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